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A rigorous treatment of the symmetric multigroup transport equation is given by developing the functional
calculus for the transport operator. Von Neumann spectral theory is applied to nonorthogonal cyclic

subspaces, and the isometries onto C(N) are explicitly evaluated.

Hangelbroek and Larsen and Habetler have indepen-
dently provided rigorous techniques for solving the time
independent one speed linear transport equation, 2
While the Larsen—Habetler approach has the distinct
advantage of demonstrating, as its central result, that
the transport operator is spectral, when this result is
already evident, as for example, with a self-adjoint
kernel, the Hangelbroek approach appears to provide
a most effective setting for understanding the underlying
properties of the transport operator. In fact, Hangel-
broek has succeeded in showing that the Wiener —Hopf
factorization, which has been used as a basis for ex-
tending the solution of the full range problem to the half
range, can be derived from a study of projections in the
representation space of the full range theory,?

Recently, Zweifel has extended the Larsen—Habetler
technique to the multigroup transport equation.*5 In this
article we wish to show that for a symmetric kernel the
functional calculus can be developed for the multigroup
as by Hangelbroek for the one-speed equation.

Since it will be necessary to evaluate the isometries
between subspaces of the solution space and the repre-
sentation spaces explicitly, the von Neumann spectral
theory will be applied to nonorthogonal cyclic subspaces.
The subcritical case, C<§, is considered in detail first,
with extensions in the last section to more general
kernels.

1. THE ALGEBRA GENERATED BY A~y

We consider the Hilbert space /=7, /%), the
direct sum of » copies of /2(I), where [ is the real in-
terval [-1,1]. For 1<i<p, let ¢,c/ be the zero func-
tion in each / *(I) except the ith copy, where it is the
unit constant function. A vector y ¢// will be written ¢
={¢, 11, with (p, @) , =37, [3 du () ;0.

Let S be a positive, diagonal #nX»n matrix, C a real
symmetric matrix, and assume for simplicity that S
- C>0. Throughout we will write o, for S;,. Define the
orthogonal projection P: 7 =~/ by

Pd>:§i2 (p,e;), e

=1

and the bounded operators A: #/ —~# and M: 4 —~# by
A=S-CP,
M) =uodl), uel.
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Noting that P commutes with every constant matrix, the
inverse of A is computed to be

Al=81481C(S-C)'P.
Write K for the linear space // with inner product
{¢,0t=(A0,),. 1)

On K, A is still positive, and additionally, B=A4"'M is
self-adjoint. Let A4 be the C* algebra generated by B on
K, C(N) the C* algebra of continuous, C-valued functions
on the spectrum N=0(B) of B with uniform norm, P(#)
[resp. P(A), P(C)] the subspace of polynomials in each
component in K [resp. 4,C], and E the unit constant
function in C (N). For each integer i, 1<i<n, define M,
cK vy M;=P(A)e;.

Lemma 1: If Te P(/]), then Te, = P(/() for each i,
and the degree satisfies:

deg T =deg(Te,, ;) ,,
deg T'> deg(Te;, e,), +2, j#i, degT>1,
Denoting by L. S, the linear manifold spanned, we have

MN{L.S. U M}=9,
i#i

L.S. U M;=P(K).

i=1
Proof: It T € P(A) and degT =n, then
BTe;=07'uTe, +S1C(S - C)* PuTe)),
and the first part follows by induction, with
Be; =uoi'e;, Be;=u’0fe,+35'C(S~C)!Ste,.

For the last part it is sufficient that, for each ¢, all
polynomials ¢ = K with (¢, ¢,) =0 unless j =i can be ob-
tained, Assume, by induction, that all such polynomials
for all i and degy <N can be obtained, and assume y
=(ay, 1"+ Py(u)e,. 1f

N
Ay, 9B tey= aN+1“N*lei +Qye; + ;ﬂ. RN-l.j(u)ej’
let

Zj)SN'j(B)ej:QN(u)ei,

2 Ty.,, (Be;= ; Ry, {we;,
J i¥i

; UN.j(B)ej:PN(u)ei’

for polynomials @, Ry, Sy Ty.y, ;> and UN,]. of

1+ 32
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indicated degree. Then
aN+1OI!” BN”ei +Z ,-UN.j(B) - Sy, (B) - TN—l,j(B)]ej =i.

For each i, define 73 A—~M,; by 7, T~ Te, and let «:
A ~C (M) be the Gelfand isomorphism. If 7= A and 7 (T
=0, then T4e;=ATe,=0 so T=0 onAe,. Since T=0 on
M, this proves:

Lemma 2: 7, is a bounded linear isomorphism of A
onto A €.

Define F;: K —~C (N) by Fy=x77! onA e; and F=0 on
M;. LetC (N) be the 11near space C (N) with inner
product

(@, )= 1F'e, Fi'yh
Then F, is an isometric linear isomorphism on/]e,,
and Fi(ei)zE

Lemma 3: For a unique positive Lebesgue—Stieltzes
measure 0,,

(@,9);=J eWW) do,v),
for ¢,y PC).

Proof: Defining the linear functional /,;: ¢ —
@ P(), the estimate

’(¢’E)i| = H’f'l‘/’ei’ eiH < “ K'i‘r’)“{eix e}
=sup \‘P(V)Hei:ei}

v=N

(¢, E); for

proves I, ¢ PC)*, Hence,
((/7, l/))l :{(p(B)ei, Zp(B)e,'}:{ZE (B)(P(B)e,-y ei}
= o, B), = | 0B doy(o).

If ¢ is positive, ¢(B) is a positive operator, by the
spectral theorem for self-adjoint operators, so

f<P do,(v) = (¢, E);={¢(Ble,, ¢;} = 0.

By the Lemma, F; extends to an 1sometr1c linear
isomorphism of M, onto [2(N, o, ;). Write M for the
bounded operator on /%(N, 0,),

()W) =ve(v), ¢=L%N,0).
Corollary: For anypc K, F,(By) :I\;IF,.((p).
For F,(Bo)=ve(v) if ¢ =y(B)e,= M,;, and M} is an

invariant subspace of B.

2. SOLUTION OF THE EQUATION

Let N, represent the nonnegative/nonpositive sub-
sets of N, and P, the orthogonal projections of L3N, 0)
onto [ *(N,, o), viewed as subspaces of L3N, o), P3N,
0)=0. The solution of the n-group isotropic nonhomo—
geneous linear t{ransport equation is provided by the
following theorem.

Theorvem 1: Let q:IR —~ K be uniformly Holder con-
tinuous, and (g{x), ¢(x)) 4 uniformly bounded. Consider
Alg= },l 14; with ¢;:TR —~ M;. Define

9. = [ expl- (x - OVI(PFq,)(E) di. (2)
Then

P(x) = M1A ?:1 FiY(¢;, +¢;)
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is the unique solution of the transport equation
d
d—XMlD(x):AZ!)(x) +q(x), (3)

satisfying (M¥(x}, ¥(x)) » uniformly bounded.

The proof of the theorem is an immediate consequence
of the following two lemmas.

Lemma 4: $;:IR—K is a solution of

d
Ba;gb.-(x)——wi(x)wi(x), (4)
satisfying (My;(x), $;(x)) , uniformly bounded if and only
if @;(x) =F;A\My; is a solution of

(Pi(x):—M'lwi(X)+Fi4i(x), (5)
satisfying (¢;(x), ;(x)); uniform bounded.

Lemma 5% Suppose g:IR— X is a uniformly Hélder
continuous function from IR to the Banach space X, and
lg)l is uniformly bounded. If < 0 and — (T + 8) is the
generator of a bounded holomorphic semigroup,® then

ox) = f { fl“ exp [Mx ~ 5)]_—T1+—X dh} g(x) dx

for a contour I' about 0(7), is continuously differentiable
in IR, and is the unique solution of

—e)=-ToK) +gx),

satisfying |l¢(x}I| uniformly bounded.

Lemma 4 is established immediately by the isomor-
phisms F;, and Lemma 5, the generalization of a result
from Hille-Yosida semigroup theory, is proved in
Ref. 2.

If {y,} satisfies Eq. (4), then y=3% 9, is clearly a solu-
tion of the transport equation (3), so the problem reduces
to a consideration of Eq. (5). Since /*(N,,0) are
invariant subspaces of ]V:’, it is sufficient to solve the
equations on each of the subspaces. But on L3N, 0),
the restrictions of M1 are semi-bounded self-adjoint
operators, and Lemma 5 is applicable. Equation (2) re-
sults trivially from evaluating the contour integral in
Lemma 5 for T=1/v.

3. EVALUATION OF THE ISOMORPHISMS F;

It remains to compute the maps F; and Fi! explicitly
in order to apply Theorem 1, and it is desirable as well
to derive the measure 0.

Lemma 6: Let v, denote the poles of A\ for !
=1,. . .,m and R{y,) the residues. If ¢ = P((), then

(Fp)(u) = Z o)l — pSHIRWe; + (1/2m)

X P j_:dwp(v)(ul— pSH AL W) — AT (v) e,
+ 575 (@A™ + oA N (e,

where A~ are the boundary values of A™! along the cut
I, and for any function W:IR— /(K) from IR to bounded
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operators on X,

(en (TsW(0)E) | = ey, Wlx/0)E)
foralll<kspand £cK.

Pyoof: Since B — M= A(N)(S"u -~ M), Fi! can be evalu-
ated on analytic functions by a contour integral of the
resolvent applied to the constant vectors ¢;, i.e.,

(Fo) () = (¢(B)e;) (1)
=(1/2m5) fr dx (W) (A - S p) 1A (e, (M

Computation of the contour integral is routine, contribu-
tions rising from the same terms as in the one group
case,

For ¢,pc K, let

[¢; d)]:Z} (pkzlbk“
k=1

Lemma T: If pe P(A)e; and Q: € — [ (K) satisfies
(@) [A*(Ve;, (1522(\))e;]=1 on a neighborhood of N,

() [e,, 2(Ve,] analytic on the complement of 7,
then

(Fi0)(v) = (1/277) Ld)\hp()\), (A= vS)iQ(Me;l, ve N
for a closed contour I' about N,
Proof: If T’ is a contour about N inside T,
01 =/2m) [ o), (VI- v IQ0)e;]
=(1/2m) [ d)\(qu)(h)(l/Zni)E}l Loava/oa-n)

X[SA T (Ney, e, Jl (NI - vS) 1R )e,, e,),

using Lemma 6. From property (b) and the known analy-
tic behavior of A(A), the I'/ integral can be evaluated

o) = (1/2m')ki=1 S MFQMISA ey, e,]
X[(SA = vS) H(TIQ) Ne;, e,]
=/2m) [ AEANA/A~ DT (A 0ey )]
x[(T7Q)(Ne;, ) = (Fo)(v).
Covollary: (\) defined by

Q=(75A),

satisfies Lemma 7.
Proof: For any A€ (C,
[731 (TSA)t()\)ei, ek] = [(TSA)tO‘Uk)ei; ek]

=[15AN0)e,, e;]=[AN)e,, ¢;].

The subspace spanned by {e,}l; is an invariant subspace
of A(\), and the restriction A (A} of A is a constant
matrix. Then for A& N,

Z)} [A(A)-ien ek][A(h)ek, ei] :Zk> Ac()‘)ikAc(x);e} :Iii'
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Also,

1
o
A= [(“‘D I dp ‘“—_kyxo—J € ei]
-1

1
_ Oplt
= 51k+DikJ:1 dp U — A0,
where D=S$"1C(5- C)1, so
1
(A, (W) =0, + 0Dy, Il (/=N dy,
which is analytic for Ae C/I.
Covrollary: If o< P(A)e;, then
Fi0)) = 3l1do), 3@ ) + 2 (M)e, 15,4,
1
+(1/2m)P [ a\lo(), (M - vS) e (- 2 W],

where

8 ., = 1
u#v, 0
’

and (eky 1'Si<p(p)e‘.) = %(Ukv)-

~1<v<l1

V=1,

To compute 0 conveniently, it is helpful to collect
some properties of A.

Lemmag 8: For Ac(C,

AN = A (N =2TADSW,, (8)
where
1, |x| <1/0,
(M= {o, A >1/0,
is diagonal. For A& N,
AN =1- I+ DT)DPM(S M - A, 9
where

1
(Tm=3% [, (Ou/n-20)du
is diagonal. Hence,
A0y =1- s"icP. (10
Proof: Since AN} =I+DPu(Stp -, AN =1
+ DT, and I - DT, is invertible if A& N. Multiplying Eq.

(9) by A and suitably collecting terms proves the opera-
tor inversions:

AAY=1-{(I+DT)"'D+D - DT, (I + DT,)"'D}P, (S i — A1
=I~{~ (I+DT)UI+DT) + I} DPu(S-y - AD)1
=I=A"MA.

Since

A1) =I- (I+DT)'DSP - (I+ DT,)'DS\P(S-1p — AD)?

and Ty=S,

A0 =1~ (I+571C(S - C)19)-1s1C(S - C)-isp
=I1-(SYs-c)Cc1s+n-ip.,

Finally,

AN =I+DPSS (S - A1 =1+ DSP(S1u -~ D,
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and thus,
1
A N:,=(I+DS+ADSP [ ,an (St = At
+ADSTid(|X] <1/0,)),,

Theovem 9: For each 1 <j<pn, and1<i<n,

(%(S—C)CS*D(V)@,-,e) v=v,,

(Fie)(v)do(v) = i
((S- O)YCSA W)y DSW, A (V) ey, e)) , dv,
-1<v<«l.
Pyoof: Since Fi' is an isometry, for all ¢ < P((),
fN QW) F;e;(V) do(v) = (g, Fie;)y ={File, FilFe;}
={o(Ble;, e;}
= (1/27%) fr dxoMW{(A - B) e, e}
Rewrite A as in the proof of Lemma 8 to obtain:
{0 - B)Yle, e ={- st tAM e, e))
= (M-S ) AN ey, Ae))
= (1/M(PXA - SHp) A e, (S - C)e))
=(1/N{(Cc1s-I1+P
—(CIS-DAM)AN) ey, (S-C)ey)
=(1/M((S - C)CtsA(A)Y ey, e))
— (/NS - C)CS - Dey, e)).

Therefore, the integral can be expanded. The contour
integration is completely analogous to that in the proof
of Lemma 7,1i.e.,

f PO F5e,() do(v)
zzim [ dx%@ ((S—C)C1s AY(Ne;, e))
. r 22 (s- c)cts - ey e)

520 (s oyertsr(vy) +—1—Pf1dvm
DY, SELDY 7 v

1 -1

X ((S - C)CIS(A (1) — AT W)M) ;4

+3¢(0)((S - C)C1s(A™1(0)*

+A7H0));; - ((S- CNC1S - D) ;;9(0). (11)

Equation (10) of Lemma 8 gives

LS - O)CIs(A1(0)* + A1(0) ) = (S - C)HCIs- D)
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so the last two terms of Eq. (11) cancel. Moreover,
A R) — ATN) = - AT (AW - AW)DAL @)
=2mivA~ (V)" DSW, AL (v)*

from Eq. (8). Since P(C) C /?(N, o) densely, the
integrands are equal.

Note that Theorem 9 gives o(v), since F;e;=¢;=1,

4. EXTENSION TO SELF-ADJOINT KERNEL

The functional calculus approach which has been de-
veloped above can be extended in toto to the case of the
general symmetric kernel: S diagonal, C=C¥*, det(S
-~ C)#0 (or C similar to a self-adjoint matrix, S in-
variant), by considering // as a Pontrjagin space with
indefinite metric defined by Eq. (1). More precisely,
for every pair of imaginary eigenvalues, a two-dimen-
sional invariant subspace is split off from //, and for
each real eigenvalue such that (A, @) » <0, a one-
dimensional eigenspace is removed. On the remainder,
B is similar to a self-adjoint operator. This decomposi-
tion is due in general to Krein’s Invariant Subspace
theorem.

In the case of the 2-group, the assumption C=C* can
also be dropped. For it is evident that C can always be
symmetrized by a similarity transformation which
leaves the diagonal matrix S invariant,

For details on these Pontrjagin techniques, see Refs.
3 and 7.
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By using the resolvent integration technique introduced by Larsen and Habetler, the one-speed, isotropic
scattering, neutron transport equation is treated in the infinite and semi-infinite media. It is seen that the
results previously obtained by Case’s ‘‘singular eigenfunction” approach are in agreement with those

obtained by resolvent integration.

I. INTRODUCTION

The linear transport equation with ¢ =1 was treated
by Shure and Natelson,! who used the Case singular
eigenfunction approach.? Larsen and Habetler® later
rederived Case’s formulas using a contour integration
technique which was not subject to some of the criticism
which had been levelled at Case’s approach through the
years, mainly that the derivations were in fact only
heuristic arguments. However, Larsen and Habetler
were unable to treat the conservative case, ¢=1, but
claimed (Ref. 3, p. 536) that the results for that speci-
fic case could be obtained by taking the limit ¢ —1 in
their derivation for ¢ #1. This contention has recently
been attacked by Kaper,* and since Kaper’s remarks
seem to have merit, we present here the explicit analy-
sis, along the lines developed in Ref. 3, for the case
c¢=1. This case, incidentally, which corresponds to a
critical half-space in neutron transport theory, has
more physical significance in the context of radiative
transport theory in stellar atmospheres, where it cor-
responds to a gray, conservative atmosphere in local
thermodynamic equilbrium. (See Ref. 2, Sec. 10.5.)

An alternative to the Larsen—Habetler analysis was
independently developed by Hangelbroek,® who proved
that for ¢ <1 the transport operator was similar to a
self-adjoint operator, and so was able to apply von
Neumann spectral theory. Lekkerkerker® has extended
Hangelbroek’s work to the case ¢ =1 by defining a
suitable subspace of the original Hilbert space, on which
the transport operator is similar to a self-adjoint
operator, obtaining a spectral theorem for the restric-
tion of the transport operator to this subspace, and
finally extending the results to the full space.

Our technique, following Larsen—Habetler, was
inspired by Lekkerkerker. Specifically, the Larsen—
Habetler technique fails for ¢ =1 because the transport
operator, X! in their notation, is not invertible, How-
ever, a suitable restriction of X-! is invertible, and the
entire Larsen—Habetler method of analysis can be car-
ried out for this restriction. The extension of the results
to the full space is then almost trivial. We feel that
our analysis has some advantages over that of Ref. 6,
in that it is considerably shorter and simpler, and in
addition, is not restricted to a Hilbert space. Further-
more, the Larsen—Habetler technique appears to have
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some real advantages over both the Case and
Hangelbroek methods in the analysis of the multigroup
transport equation,”™?® and it is planned to use techniques
similar to those reported here to attempt to extend the
multigroup results, which are so far restricted to the
subcritical medium (but see Ref. 9).

If. THE RESOLVENT OPERATOR AND THE FULL
RANGE EXPANSION

As in Ref. 6, we consider the one speed transport
equation with isotropic scattering for a conservative
medium, ¢=1, i.e.,

ug—i(x,u)+uK*llP(x,u):q(x,u), u#0 (1)

with
By = 1/ fr) = 5 [ e, u) '], (1b)

A solution of Eq. (1) is understood to be a differentiable
function y:R—~X,, p>1, where X, is the Banach space
of functions f: [-1,1] -~ € satisfying

“f“,,:(f_i Iuﬂu)lpdu]l/p< o,

and the vector ¥(x) has been written §(x,u). The non-
homogeneous term g(x,u) is specified with (1/u)q(x,)
cX,.

»

Equation (1b) defines a densely defined, closed, un-
bounded, noninvertible operator K X, — X, with do-
main D(K") ={fe X,|f=ug, g X,}. The choice of X,-
norm has the result that the operator K™ =#"'4 cor-
responds, for p=2, essentially to the product Au™! of
operators on L, used by Kaper' for a related problem
in the kinetic theory of gases, rather than the product
u™'A used by Lekkerkerker in Ref. 6. In fact, the
unitary transformation U: X, =~ L, given by (Uf)(u) =uflu),
transforms K™ into UK *U" = uu*Au' = Au™*. This
avoids considerable difficulties encountered in Ref. 6;
in particular, in our treatment, D(u"')=D(K"?).

In most of the remainder, explicit x-dependence will
not appear, as the transport operator X! is studied in
X,. This notation agrees, except for minor variations,
with that of Refs. 3 and 2, Sec. 6.9. Note that the ex-
tension of the analysis of Ref. 3 to X, for ¢ #1 has been
given in Ref. 11 for p>1. While it appears that the
forthcoming analysis could be carried out in X,, that
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would require substantial alteration of the technique.'?

The essence of the Larsen—Habetler technique is to
invert X! to obtain X, calculate the resolvent (2] - K)™!
and then integrate the resolvent along a contour sur-
rounding the spectrum of K. Application of the Cauchy
theorem yields the so-called Case completeness
theorem. This technique fails in the present case be-
cause K™ is not invertible on its range. In fact, A=0 is
an eigenvalue of X! with eigenvector ¢, defined by

elu)=1, —1<y<1, (2)
Furthermore,

K'e,=e,, (3a)
where

e (y=u, -1<u<1, (3b)

We shall see that e, and e, span the x=0 root linear
manifold of K,

As explained in the Introduction, we now define a
subspace Y, CX, such that K™'| Y, is invertible. To this
end, define

Y,={feX,
and
Ypo = Sp{eo; el}

Theorem 1: The direct sum decomposition X, =7,

-+ Y,, reduces K,

| fiz,ﬁﬂu)du:O, i=1,2}

Pyoof: The linear functionals

Poif 3 j_i wflu) dut, {(4a)
1
Py f— 3 ]uluf(u) du, (4b)
have the property
ple;)=0,, i,j=0,1.
Hence,

P:f—p, f)en+pl f)e1
is a continuous projection onto Y,,, and Y, is its topol-
ogical supplement. The computation p,(K-'f}=0 for f
2 Y, follows immediately from Eq. (1b), and since
PD(KY) =Y, CD(K), the subspaces are reducing,

Theorem 2: K| Y, is invertible, and its bounded in-
verse K is given by

Kg=ug~3 f_: sig(s)ds.
Proof: Consider the equation
K'f=g with g V,.
This may be written
-3 f ﬂs ds —=ug.

If the equatlon is multiplied by #* and integrated over u
from ~1 to 1, one obtains

flﬂs)ds =-3 " iiglar) du,
-1 =1
and the result follows.

Theovem 3: For zcC/[-

z 124 {g --[1/21\(2)]‘[1 (sg(s)/s — 2] ds} ,

Mt =3 [ ez =s)ds |
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1,1]and ge ¥,

(2l - K)lg=

Where

is the usual dispersion function® for ¢=1,

Proof: The analysis of Ref. 3 can be followed to

arrive at the result {
(2ZI-K)lg=(1/2~u) {: -S—{(—Z—djl

3 £
x|1+32 LA
1 zilg_ldt

Then the identities
Wz —u)= -1 —uz+uz’/(z —u)

—u—uz -2+ 23/(z -u),
can be used to simplify the two integrals in the expres-
sion, yielding the stated result.

Note that this expression for the resolvent is identical
to that obtained in Ref. 3, and so a great deal of the
analysis given there can be taken as verbatim.

The spectrum of X can be obtained immediately from
the expression for the resolvent in Theorem 3: a(K)
=[-1,1]. Although A(z)~-1/322 for large z, |’ , (sg(s)/
s~ z)ds 1/2% in the same limit, so the resolvent (=1
- K)*! converges to zero at 1nf1mty, reflecting of course
the boundedness of K. Thus,

I=(1/2m) fr (21 - K)" dz,

where T is any closed contour surrounding the cut
[-1,1].

Since the Hoélder continuous functions are dense in
Y, by an easy application of the Weierstrass theorem,
if

H,={fcY,|fis of class H*},
then H, +Y,, is dense in X, It is also easy to see that
H,N D(K') is dense in ¥,. Here by “of class H*”is
meant®?® that f is Holder continuous on the interior of
[-1,1], i.e.,

| ) = fle) | < const X |u~u’ |[*, a>0,

and also that f near the endpoints =11 of the interval
is a product of a function H&lder continuous on [~1,1]
and the function {(u —b)®, 8> ~ 1. The Larsen—Habetler
analysis utilizes the pointwise evaluation of the boundary
values of certain analytic functions of z in the domain

of the resolvent (zI - K)™!. For that reason it is neces-
sary to stay on the manifold H,, and extend the final
results as in Ref. 11,

Alternatively, we may have chosen to “compute” on
functions HOlder continuous on the entire interval
[~1,1], whence the Case transforms A(v), as well as
rv)A(v), would have vanished at the endpoints b [by
virtue of the fact that A(v)/N(v) — 0 at the boundaries;
see Eq. (6)]. However, this would lead to no simplifica-
tion of the arguments.

In this manner, the analysis of Ref. 3 yields results
analogous to the case of ¢<1; i.e., for each fe H,
there exists A X, of class H* satisfying:

ﬂ”):sz(v)tb,,(u)dv, (6a)

1
A(v):N(LU)‘/:1 uf(u) () due, (6b)
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where ¢, is the usual Case “singular eigenfunction”
corresponding to ¢ =1; namely,

¢,u) = (0/2)P(1/v —=u) + 5[A*(@) + A () o(v —u) (D)
and

Nw)=vA*()A(v)

converges to infinity at the endpoints + 1. The notation
is the same as that of Refs. 2,3 and 11. In the language
of Ref. 2, we would say that every f< H, can be
expanded in terms of the Case continuum eigenfunctions
alone.

To deal with fe Y,,, write
f=ta,-ta (8)

where the factors ++ have bnen introduced to conform
with standard notation. Multiplying Eq. (8) by u or 2
and integrating, one finds

a,:3f:(—u)2'iﬂu)du. (9)

Let A(v) denote
Mo)=3[A(0) + A ()] (10)

We wish to show that the linear transformation
F: f — 1A defined by Eq. (6b) for f of class H*,

(FA@)=[M2)/N(w)] f_iuﬂu)%(u) du,

extends to an isomorphism F: Y, ~X,. Define F':y—f,
the natural candidate for F-!, by

(Fry)(u) = f_i [p@)/ Mo)]¢ () av

for any ¢ of class H*. Equations (6a) and (6b) establish
the relationship F”F=1Ion H,, which is dense in Y,. We
must ascertain, however, that F’ is a bounded transfor -
mation into Y,, or else the extension of F to all of Y,
might no longer be invertible, Moreover, it is neces-
sary to prove that the range of F is dense in X, in order
to insure that the solution of a transport problem solved
in terms of the transformed function A{(z) will be the
image under F of a vector in X,.'*

In Ref. 2 it is shown that if fis of class A*, then A
will be of class H*, and hence so will A(v)A(v). Further-
more, any A of class H* will yield a function f of class
H* via Eq. (6a), since

ﬂu):)\(u)A(u)+§Pf_i [vA(@)/v —u]dv, (11)

and the boundary values of the Cauchy integral of a
class H* function are also of class H*.

In Ref. 11, the inequality
f_i [oA@)A@) |# dv < M, fi |uflu) |? du, (12)

where M, is a constant depending upon p, proves that
MeX, if fe H,, and that F is a bounded transformation.
Let

Hi={Ac X,|M X, of class H*}.

Then the same argument used to derive Eq. (12) also
yields

f_i |uﬂu)"du<M", J_i }vzl)(v)|"dv,
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for e H;, which implies that F is one-one on H,. Com-
bining these remarks, we obtain bounded transforma-
tions F and F’ on Y, and X,, respectively, with F'F=1
on Y,, and FF'=1Ion Ran(F).

A direct computation shows F' ¢ Yp for ¥ H;. For
example,

po(Fy) = f_ll[vw(v)/K(v)]P j_i (/v —u) du dv

+ [L )/ 2@ M) dv
:O’
since
Pf_i (/v —u) du= - 20A(v).

Thus, to prove Ran(F) is dense in X,, suppose A< H,
and

O:f_iA(v)qbv(u)dv. (13)
Defining
n(z)= f:A(v)v/(v -2)dv, (14)

expanding Eq. (13) as in Eq. (11), and using the Plemelj
formulas with Eq. (14), yields
(1/208)[n* () = n- (@) M) + 5[0 (0) + n- () e/ 2) = 0.
With the substitution
u=(1/7)[A*a) = A(u)],
and Eq. (10), this becomes
(1/20)Y (A" =" X)=0, —1<u<1, (15)
If J(z) is defined by
J(2) =n(2)A(2),

then Eq. (15) proves that J is an entire function. But
A(»)=n(=)=0, so by Liouville’s Theorem, J=0, which
proves A(pv)=0. Hence FF’'=I and F’'=F-!, Using the
density of H, and H, in ¥, and X,, the transformations
in Egs. {(6a) and (6b) may be extended by continuity to
all of X,.

The above results can be summarized in Theorem 4.

Theorem 4: Let fe X,. Then f has an eigenfunction
expansion of the form

f=%ao—%alu+f_iA(v)qbv(u)dv, (16)

where q, are given by Eq. (9), A(v) is given by Eq. (6b),
and ¢, is the Case singular eigenfunction defined in Eq.
(7). The linear transformation F:f— A4 is an
isomorphism F: Y,—X,.

Ill. HALF RANGE EXPANSION

Let X! be the Banach space of functions f: [0,1]~C
with

Hﬂl{,:[f: lufu) |? du /e < oo,

The object for the half range theory is to find an opera-
tor E: X] — X, with certain analyticity properties given
below. Then the full range expansion of Ef will cor -
respond to the “half range expansion” of f (cf. Ref. 3,
Sec. 4). It will in fact be necessary to restrict E to a
subspace Y; CX] such that E| Y] will have its range in
Y,. Then the expansion of (E| Y}) f will give the half
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range “continuum modes,” while the discrete modes
can be separately treated.

We require the operator E to have the properties:
(i) (2I - K)™Ef analytic in z for all Rez<0, fe v
(ii) p,(EN =0 for all fe ¥,
(iii) P(EN) =0 for all fe X3.
The first proper guarantees that the expansion of Ef
contains only eigenfunctions ¢, with »> 0; the second

and third guarantee that Ef < ¥,; while the third also in-
sures that the discrete coefficient a, of Ef vanishes.

Before the subspace Y] may be specified explicitly,
let us recall some properties of the dispersion function
A. The Wiener —Hopf factorization of A(z) provides a
function X(z), analytic for Rez <0, such that

X(2)X(- z)=3A(z2). 17
Moreover,
X(z)= fOI [v(w)/u — 2] du, (18a)
where
u X (u)
=3 T (18b)

Now we may define ¥, C X7 by
1
vy={feX; [ v(p)fn)du=0}

By analogy with transport in absorbing media, we are
led to study the transformation E: X] —~ X, defined on
fe Xj of class H* by

1 _3 f sfls)ds <0
(EN) = Xw 2 ) X=ss-u) 7 9)
fu), w0

Since X(u) is analytic and bounded away from zero for
1#<0, we see from the Holder inequality that E extends
to a bounded operator from Xj to X,.

Property (iii) is verified by Theorem 5.

Theovem 5: For all feX,, Pi(Ef)=0.

Proof: From Eq. (19),

1 1 3 P
f; u(Ef)(u)du:f uﬂu)du+§f ;{(ss X(uustiu

- 0

for fof class H*. Changing variable from « to ~u in
the second term above and utilizing equations (18¢) and
(18a), the identity

fol Yu)du=1, (20)

and the continuity of E, the result follows,

Next we shall see that property (ii) is satisfied.

Theorem 6: For all fe X
pl(Ef)::%fl ¥(u) flue) du.
if fe Y], then Efe ¥,.

Pyroof: As in the proof of Theorem 5, we compute

Hence,

166 J. Math, Phys., Vol. 17, No. 2, February 1976

fuz(Eﬂ(u)du:f u?f(u) du

-1 0

3 ' sfis) Y
+2 J; X(-s) ds[l X(u)s ~u) *

(18b) re-

The change of variable # — —u along with Eq.
duces this to

Luz(Eﬂ(u)du:[) w?flu) du+ ;—(fi%ds./o %(Z?—du.

Finally, writing «/(s +2)=1 - s/( +u) and using Eq,
(18a), we obtain the desired expression for p,(Ef).

This result, along with Theorem 5, proves that Ef
€H, if fe ¥, and is of class H*, since the Cauchy in-
tegral in Eq. (19) preserves Hélder continuity.

Let Y}, denote the subspace of X; spanned by ej(u)=1,
u<[0,1]. As a corollary of Theorem 6, we obtain

Corvollary 1:
X] =Y, + Y, reduces E.
Pyoof: From equation (18) we obtain

X(u)=% Olsds/X(—-s)(s—u), (21)
and thus compute

(Eel)(u) = ey(u).
Defining the bounded linear functional

phf— f: y(u) flu) du,
and the projection

P':f— ps(Nes,
the identity equation (20) and Theorem 6 prove the
reduction.

The remaining property of E to be confirmed is given
by the following theorem.

Theovem T (zI — K) M Ef)u)
<0, fe Y.

is analytic in z for Rez

Proof: Analyticity is assured except for a possible
branch cut [-1,0]. However, using Theorem 3 and Eq.
(19), and applying Egs. (17) and (18), yields for « <0,
after some rearranging,

(2] - KYHENu)=(1/z - u){f dt y(1)

o]

1 1
XAl [X(u)(t —u) X(z)(t-2) ] } ’

From this, the analyticity along [~1,0] can be
concluded.

The expansion of a function fc X is accomplished by
applying the full range expansion of Sec. Il to Ef. In
particular, let P” represent the “projection” onto Y,
along Y3,, P"= (- P)E. Then

(ENw)=14ta,+ P "fu),

since @, =0 by Theorem 5. The expansion of P"f is
made as in Eq. (16), while a, can be calculated from
Theorem 6. Thus,
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P'flu)= | YA, (u) dv, (22a)
with

AW) = [0/ YOINW)] [ fuhyla), () e (22b)
and

a,=2 fol Y(u)fu) du/fo1 () du. (22¢)

The solution of the half range neutron transport
equation at ¢ =1 may now be carried out as described
in Refs. 3 and 11. The eigenfunction expansions devel-
oped here are used to choose a, and A(v) to satisfy the
boundary conditions at x=0 and x — », and the full
solution is expressed in the form

zp(u)z%ao+folA(v)t;bv(u)exp(— x/v)dv.
For details, see the references cited.
IV. SOLUTION OF THE MILNE PROBLEM

We seek the solution i, (x,x), of the homogeneous
transport equation in a half space subject to the
conditions

U (0,2)=0, u>0, (23a)
and

bylx,u) ~3x, (23D)
as x —«., The Milne problem is solved by
bylx,u) =505+ 5(x — ) + folA(v)¢v(u) exp(—x/vYdv, (24)

where

P — f:u}/(u)du/fol ) du (25)
is the so-called “extrapolated endpoint,” and
A@)=[0/YIND)TE " u,uv(w) du. (26)

0
It is trivial to verify that the first two terms of equation
(24) do indeed satisfy Eq. (1), and since!

K= [1(1/0)A0)8 () dv,

for all fe ¥, that the third term does also. The coeffi-
cient a, has been determined by setting x =0, multiply-
ing both sides of equation (24) by (), integrating over
u, and using the boundary condition (23a), as well as
Theorem 6 to conclude that the integral does not con-
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tribute. Similarly, to solve for A(v), imposing the
boundary condition (23a) and using the fact that a,c ¥},
one obtains expression (26).
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We present a simple solution to the inverse problem for the Schrodinger equation at fixed energy for

complex “r#

-analytic” potentials of finite range. This is done via an interpolation formuia for the regular

radial solutions as functions of complex angular momentum. The interpolation formula is derived by
Frobenius techniques and Cauchy’s theorem. As an application we study an inverse problem for a
spherically symmetric cold plasma perturbed by a small oscillatory electric potential of fixed (finite)

frequency.

INTRODUCTION

In Sec. 1 we derive an interpolation formula for the
regular solutions of the fixed energy radial Schridinger
equation as functions of complex angular momentum. 2
The result is valid for complex potentials which are
analytic in #*, Rea> 0, and their generalizations of the
form

J
w(r) =2 ur™% n.a=2m;a,
n n i=l

n;=0,1,2, ..., Rea,>0.

This interpolation is then used to obtain an interpolation
formula for the logarithmic derivatives at a fixed radius
R. We show in Sec. 2 that this interpolation formula
gives a simple solution to the fixed energy, finite range
inverse problem of determining the potential from the
logarithmic derivatives at finite radius. This much can
be viewed as an extension of Loeffel’s® results to a lim-
ited but large class of complex potentials. Qur methods
are, however, elementary. We use only Frobenius se-
ries and Cauchy’s theorem. They are thus amenable to
generalization. We give a method for constructing this
interpolation for any finite number of logarithmic deri-
vatives by using rational functions. We give a method
for constructing these rational interpolations for the
simplest case J=1, but show that it is unstable and can-
not be extended to an infinite data set. As far as we
know this same instability problem (in constructing the
interpolation) is also open in Loeffel’s case.

In Sec. 3 we present an application of this technique
to the inverse problem for the linearized plasma equa-
tion V - [w2(¥) - w? - iwv]V®,(¥) =0, where wi(#)= ion
density is to be constructed from the set of surface lo-
garithmic derivatives {Rdz1n®,(R)}, where

& () [ AR YE(3)2,(),

r=|x|, xcR®, D=2or3, t=x/7.

Our solution' works with data at fixed finite frequency
w, as opposed to a previous solution by Degasperis? at
w ==, The basic idea used is that [w(?) - w? - iwp]'/?
x & (x) satisfies an equation of the Schodinger type with
a complex potential, and thus we can apply the above
method. Our solution for this plasma problem is in-
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complete because we have not given sufficient conditions
which will ensure that the ion density is positive.

1. THE INTERPOLATION FORMULA

In this section we derive the following interpolation
formula, (1.1), for the regular solution of the fixed-
energy radial Schrodinger equation with an “7*analytic”
potential

w(r) = 2m /B[ Po(r) = PE]=0, ur™?, ¥ <R,
f M)

where u, € €, n-a=3%],n;a;, a;c € with Rea; >0, #;
=0,1,2,.--;n>m means n; —m; > 0¥ j but n¥m and it
partially orders {n} The range of the summation is
controlled by #,=0, n$0, 0=(0,0,...,0). These poten-
tials are obviously a generalization of potentials analytic
in #*, where k is real, We will obtain the interpolation
formula

s G %h(n-a; )

h(x; 1f):1+ll>0 “Tnoa , ¢,eC, ¥<R, 1.1
for solutions of
(rd, + Nrdh(x; vy =ulr)h(x; ), (1.2)

limz(»; »)=1 (regular normalization condition for
40 Re A= 0) (1.3)

by studying the Frobenius solutions in the A plane. We
will show that {cn} completely characterizes the solution
and the inverse problem will reduce to finding these
constants® from appropriate data, i.e., the set of lo-
garithmic derivatives {rd,Ink(n-a; #)1,.,, Ry <R,n> 0}

The usual form of the radial Schrodinger equation is
obtained from (1.2) by substituting 2(x,; #) = 7", (),
AM=2l+D~-2, D=2 or 3 is the number of dimensions.
(It is in fact valid for any integer D= 2.)

It is straightforward to verify that (1. 1) satisfies the
given radial equation and boundary condition providing
that

u(r)=2%d, 2, ;7 *h(n.a; v}, 7<R. (1.4
>0
We will show that if
u(r) =25 ug?™'%, (1.5)
n>0
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then the regular solution of (1.2), (1.3), which is well
defined for Rex = 0, satisfies the 1nterpolation formula
(1.1). This will be done by using Frobenius techniques
and Cauchy’s theorem. It will then follow that u(#») sat-
isfies (1.4). Evaluating (1.1) at A=n.a, n>0, will give
us a matrix equation in I, from which we will show
that {c,} uniquely defines {(n-a; )} and thus determines
u(7) via (1.4). So the inverse problem will indeed be the
determination of {c,} from the data. [Logarithmic sur-
face derivatives are appropriate data because they are
independent of the normalization of the regular solu-
tions and can be determined from surface measure-
ments on any regular solution set. Clearly u(¥) is un-
changed by changes in normalization of 2(X;; #). ]

The derivation of (1.1) is exactly analogous to that
of the simplest case J=1. For that case we outline the
standard procedure. Suppose A(A; ¥) =Y . k(1) 7™,
hy(2) =1, and obtain the recursion relation

25 tnmhim(),

_— n>0,
na(na +2) nn

B (N =
Thus #,(}) has poles at A\=—ma, m=1,2,...,n. It
follows that

|l (¥)

lna(na + )|, sup | ha(2)7 |

| ()77 | <
where lul(v) ¥y . lu, 7|, From this bound deduce
that, for any € >0, < R; <R,

(i) the Frobenius solution converges uniformly for
re @, C¥{zellz+mal=e, m>0},

(ii) ~(A; ) =1 -0 as x—= in C,,

(iii) lim k(e - na; v) = ¥"b(na; ») and b(na; 0) is finite.

R 4]
All the results hold if we replace na with n-a, ma with
m-a, and w <n with m<n since %, =0 for n+m.

Since #(); ¥) has simple poles at A=-n-.a for n>0
as its only possible singularities in the A plane, and
since A(x; ¥) =10 as A~ in @, for any € >0, Cauchy’s
theorem gives us

1= Z—M b(n-a;

h(A; 7) - Tt

¥ <R. (1.6)

n>0
[For the general case the reader should convince him-
self that for € small enough we can indeed find a se-
quence of contours in €, at ever increasing distances
such that Cauchy’s theorem will give us (1.6).]If n.a
=m-a, but n#m, we must only count one of them in
(1.6), which is related to the following redundancy.
u, and u, are not well defined if n.a=m.a since they
then multiply the same power of ». We eliminate this
redundancy once and for all by ordering {n} and counting
only the first such index that occurs. [e.g., extend the
partial order to all n by defining n > m whenever n#m
and either Re(n-~ m)-a >0 or both Re(n— m)-a=0 and
1, > N1, n; =m;y 7>k hold. | We do this formally by
putting #,=0 if n> m and n-a=m-a, and omitting n
from the summation } .

It remains to show that é(n-a;7)=cyh(n-a;7), c,e (.

Clearly *'*(n-a; 7) =limy . _,.,(A +n-a)k(x; 7) satisfies
(1.2) with A=—n.a. The operator identity (+d, —n-a)
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Xrd,*'*=v¥"¥rd, +n.a)rd, then shows that b(n-a; 7)
satisfies (1.2) with A=n-.a. It is thus a linear combi-
nation of the regular and irregular solutions., But the
irregular solution would change the normalization of
h{x; r)—cf. (iii) above (obtained by detailed examination
of the residue) which shows directly that b(n-a; 7) is
regular. Thus b(n-a;») =c,k(n.a; ) (we extend our con-
vention to ¢, : €, =0 if m>n, m-.-a=n-a), and we have
verified (1.1), (1.2) in the following sense. The k(}; 7)
given by (1. 1) is the unique solution of (1.2), (1.3) for
Re A= 0 and it gives the analytic continuation to the
whole X plane. Equation (1.4) follows by applying (1. 2)
to (1.1).

It is perhaps worth noting that (1.1), (1.4), (1.5) must
all have the same radius of convergence as the series®
En>ocn1’n'154(7’)-

2. THE iINVERSE PROBLEM

We show first that the {c,} in (1.1) uniquely deter-
mines the vector h{») with components h(#),=k(m-a; 7).
Evaluating (1.1) at A=m-a, m >0, gives us the matrix
equation

h(7) = e + MC(#)h(7), (2.1)

where ¢;=1, M n=1/(n+m}-a, C(¥)y 5= 0y mca?""™*

As an operator in /" the norm of MC(¥) is bounded by
oo € %1 /Re(n-a+a), <R, where we have assumed
that 0 <Rea, < Rea, < ...<Rea;. This bound tends to
zero like ¥ as v+ 0. Thus MC(7) is contractive for »
small enough, say ¥ <#;. Thus h(7) is uniquely deter-
mined by C(#) for » <7,, and so is «(») via (1.4). Ana-
lytic continuation then determines them uniquely for

¥ <R. So we have shown that {c,} determines u(¥) for
r<R,€7

We now want to construct {c,} from {8(n - a)},y;, where

B(n.a)=vd, logh(n-a; 7}|,.5,. Differentiate (1.1) and
evaluate both (1.1) and its derivative at ¥ =R;.
By R)=1+2,b,/(x+n.a), (2.2
>0
BMWA(x; RY =2, [b,/(x+n-a)][B(n.a)+n-a), (2.3

n>0
where b, =c,Ri"*(n-a; R;) c €. If we can find {,} from
{8(n-a)}, we will be done because (2. 2) will then give
us ki(n.a; R,) and {c,} can then be obtained from the de-
finition of b,.

Clearly (2.2) and (2. 3) give us

B0 =2 [+ L ) (2.9
where
by/by=B(-n-.a)=B(n-a) +n-a. (2.5)

It remains to construct this interpolation of

{B(n - a)}vo. Equations (2.4) and (2. 5) are the necessary
and sufficient conditions for the existence of a potential
u(r) =3 potta?""?, which will generate {8(n-a)},,, via the
regular solutions of the radial equation.

Can we construct such an interpolation? The answer
is yes for any finite data set, but no for an infinite data
set.

llia Miodek 169



Let us consider the finite interpolation

BN = 2, _L':N._/(ht 2 b )

N AtR-a (meny AT M2

N=(N,N,...,N). (2.6)
This corresponds to the case ¢; =0 for n> N; a finite
number of poles for 2(X; ¥) at A=n.a, 0<n<N.,

This B¥(\) is a rational function of A, It is the ratio
of two polynomials, @’¥/P* (), of order JN -1 and
NdJ, respectively. These polynomials are in one-to-one
correspondence with the 2NJ constants {b;", o

PY ) =p" (0 (1 +2.0Y/(x+n oa)> ,
QYN =p" TN 26N /(A + 1. a),

where 77 (\) =l geaen (A +n-a). This rational function
has 2NJ free parameters and can be constructed uni-
quely from its values at A=+n.a, n™0.

We need only interpolate {#¥(n-a), ¥(-n-a)=g"(n-a)
+n-af by @ F1(N/PY () =8Y()) to satisfy (2.4), (2.5).
Then % =1lim,. ,.,(A +n-a)P" () /"7 () gives us a
solution to the inverse problem for the finite data set
{s" (n+ )y ey We cannot, however, guarantee the sta-
bility of these interpolations as N -, nor can we guar-
antee that the data generated by (2.6), {8 (n.a)},,y, will
be small. We do not expect it to be small in general.

In the simplest case J =1 we have studied this insta-
bility in more detail. Evaluating (2.6) at A=mna, n
=1,2,...,N, gives us the NXN matrix equation

gveY =[M" - gV HY (8" + p) k¥,
where 85, =8, 8" (na), HY  =1/(n+m) in the NXN
segment of the Hilbert matrix, e =1, and k} =(1/a)

x[8(na) +nalby, p¥ =6, .na. The finite segments of
the Hilbert matrix are invertable;

(=)™ (N+m+1)
TN = m -+ 1)L (m)C(m + 1)

2.8

2.7

(HY) T =AYHYAY, AY =0

Thus

kN — [IN _ (HN)-IBNHN(BN + “N)-l]-l(HN)-IBNeN’
where I* is the NXN identity. The inverse of [V ~...]
can be constructed by finite matrix techniques for almost

all data sets. Of course, b" =a[p(na) +nal*k! gives us
by

(2.9)

We cannot extend this technique to N =<« because the
infinite Hilbert matrix does not have an inverse matrix.
This is the cause of the instability.

Padé approximants may give a stable way to numeri-
cally construct these rational interpolations. The author
is at present investigating this possibility.

It may be worth noting that the set {8(ra)} 2, usually
contains an infinite number of points which are not given
by physical measurements. It may be possible to choose
the values at the nonmeasurable points in such a way as
to reproduce the measurable points at least to within
experimental error.
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We have based an extensive analysis of this stability
problem on the “diagonalized” form of the infinite
Hilbert matrix obtained by Rosenblum.?® The difficulty
with the infinite Hilbert matrix is that if #9(x) is the
multiplication operator on L%(dp(x)) such that the ortho-
normal basis {@,(x)} turns H*’(x) into the Hilbert ma-
trix, [dp(x)@Xx)HD ()¢, (x)=1/(n+m), then [HD(x)]|?
has no matrix elements with respect to {qo,,(x)}. Rosen-
blum constructed {¢,(0)}, p(x), H®(x) explicitly. Using
his results, we have translated the infinite version of
(2. 8) into a Fredholm equation of the third kind. Such
equations can be shown to have singular (distributional)
solutions in some cases. Extending work done by Bart
and Warnock, ® we have tried to solve this singular
Fredholm equation. Our conclusion was that we would
not be able to regenerate the matrix equations for these
singular solutions because they are singular in just the
same places as is H“’(x) and thus do not have compo-
nents relative to {@,(x)}.

In short we have no positive results on a stable way
to construct interpolations of the form (2. 4) for infinite
data sets.

Our resulls ave; (i) The existence of our interpolation
(2.4), (2.5) is a necessary and sufficient condition for
the existence of u(7) = 31,72,

(i) Interpolation of finite data sets by (2.6) is equi-
valent to interpolating {8(- n.a), 8(+n. a)}0<nsN by a
rational function 87 (1) of appropriate order, given the
condition (-~ n-a)=n-a+p(n-a).

(iii) Stability of such interpolations is an open
question.

(iv) The methods used to obtain the interpolation for-
mula are simple and amenable to further generalizations.

Brief comparison with related approaches

Our results should be compared with those of Loeffel®
for a real potential of finite range satisfying much weak-
er assumptions than analyticity. As far as we know he
too can give a necessary and sufficient interpolation
formula without being able to construct it in a stable
way.

The simplest version of our interpolation formula was
already found by Sabatier? in 1967, but it was not fully
exploited for the inverse problem. It was, however, by
means of interpolations that he was able to develop an
inverse method for spin—orbit potentials.11

The identity 1/( +na) = [} (dt/D*"™ for Re(r +na) >0
connects our formulation to algebraic moment problems
and also to generating formulas (with /-independent
kernels)

Yai :
h(x; =1 +f; T]?(V, M‘)l‘h’, Ry, vy =2 ca™h(na; v),

(2.1D

g s =2)/
Phiags 1) =7 +f d—“[(‘—')“’ zk(r,m‘»)];w. (2.12)
0

ERAY

This is Loeffel’s® transformation equation [his Eq. (27)].
Equations of the Gel'fand— Levitan, Regge—Newton
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type'? can be obtained from (2.12), It is interesting that
this machinery is not necessary for this case.

We wish to note that for a very large class of real
potentials Sabatier!® gives a constructive solution to the
inverse problem. To adapt his results, one would have
to isolate the potentials of finite range in the large class
of scattering-equivalent potentials produced by his
method. Then one would have to find a new method to
actually feed in the data for complex phase shifts. It is
only in this last step that his formalism depends on the
reality of the potential,

From the point of view of construction [Eq. (2.7)] our
method resembles that of Newton® with the difference
that his method replaces the powers of v with spherical
Bessel functions. The matrix he obtains instead of our
M has an inverse matrix, and thus he is able to con-
struct solutions for infinite data sets. We do not com-
pletely understand why one case is stable but the other
not.

3. INVERSE PLASMA PROBLEM

As an application of the results obtained in Secs. 1
and 2 we give here, in brief outline, the physical in-
verse problem which actually motivated the above study.
Unfortunately, our method does not give a complete
solution of the physical problem,

Consider a finite, cold, neutral, spherically symme-
tric plasma which is originally static and is then per-
turbed by a small electric potential applied at its sur-
face. We want to solve the inverse problem of deter-
mining the distribution of the heavy ions inside the plas~
ma from measurements of the angular dependence of
the applied potential and the responding electric field
at the plasma’s surface. The magnetic field will be ig-
nored. We will only be interested in one frequency com-
ponent, exp(-iwt)®,(x), of the residual forced oscilla-
tions of the electric potential, ®(x,f). The transient
oscillations, which are damped out exponentially by
collisions, will play no part in our approach to the in-
verse problem. It might reduce the class of equivalent
potentials in a more general formulation if additional
data could be fed in; but compatibility problems could
also arise.

Following the analysis by Barston, * we obtain the
following linearized plasma equations:

v [wi(n) + 02 +vd, Jvexp(~ iwt) &,(x)

=exp(— 1wtV - [wi(r) — w? = VW ]9E,(x) = 0. (3.1)

Here w2(#) ={[M,;../47€]Ton(+)} is the square at the
“plasma frequency” which, as is indicated, is propor-
tional to the positive ion density Ion(v); ©,(x) =(1/2m)
X ['2dt exp(iwt)®(x, t) is the Fourier time transform of
the residual electric potential ®(x, /)—these are forced
oscillations coupled to an external driving field; finally
v is a positive constant called the collision frequency,
which is introduced to represent the average damping
effect of collisions. The ions are assumed to be too
heavy to oscillate.

The inverse problem for this equation is to construct
the ion density given the measurable surface data
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&, (R%) and dp®,(R%), respectively the electric potential
and the normal component of the electric field at the
plasma’s surface; x € R?, D=2 or 3 for the cylindrical
and spherical cases respectively; |x| =# is the radius
variable and % =x/7 is a unit vector representing the
angle variable, Starting from these two functions of
angle, we wish to construct w2(») to within a normaliza-
tion constant, say, w,(0) [or equivalently w,(R)]. Clearly
the potential ®,(x) cannot give us this information.

Spherical symmetry decouples the equations for the
harmonic components of ®,(x), ®,(») < [dR)Y ¥, (2)d,(x),
1=0,1,2,--+ [for D=2, Y; (%) —exp(+il8)], giving us
the following equation for f,(*} = v &,(»):

[(vd, + \)e(vd, + 1" (N ], (1) =0, £(0)=1, (3.2)

where €(7) = wﬁ(?‘)— w? - dwp, ¢(r) = rd,e(v), ,=21+D=2,
Providing wi() — wi(0) ~7* a>0near »=0+, (3.2)
defines f; () uniquely for ReX; = 0. Notice that fy(#) =1

is the only constant solution if €(#) is not constant.

The implied equation for If;(#)1? is obtained by multi-
plying (3. 2) by f¥(#). The result when integrated gives
us

Zl) Perd, | f, (N2 :%j; %3—733”[6(}’) TAOIE

A OIAGIKN

Now (1/w) Ime(#) =v =const > 0. So the imaginary part
of the right-hand side of (3. 3) is strictly positive for
7>0 and ! real but nonzero. [If ¥=const >0~ v(¥) >0,
v'(#)< 0, this conclusion holds for I > 0. ] Noticing that
vd, | f,(v) 12 =211, (v} |Re[vd, Inf,(»}], we deduce the follow-
ing necessary consequence of wﬁ(r) real and v =const
>0

(3.3)

I7,( | >1, Rerd, Inf,(») >0 for »>0, and all real
nonzero [, (3.4)

(This result has an analog for nonspherical plasmas.*®)

We would actually like to obtain necessary and suffi-
cient conditions on Rdy Inf;(R) as a function of complex
! which would ensure the reality and positivity of wi(7).
We have not been able to do this yet, but it seems to
us that more useful information should be obtainable
from (3. 3).

We now pose the inverse problem of constructing € ()
to within a normalization constant given the set of lo-
garithmic derivatives {Rd Inf,(R)};%,. (If the plasma is
in a container with known dielectric properties, this
data at the surface of the plasma can be generated from
data at the surface of the container by solving a standard
direct problem—Poisson’s equation. )

Degasperis? solved this inverse problem at the asymp-
totic fixed frequency w —~*=., There are unsatisfactory
aspects about w — from the points of view of measure-
ments, validity of various physical approximations built
into the equations and consistency problems which arise
if interpolation—extrapolation proceedures are to be
used to generate asymptotic data from data at finite
values of w. We discuss his approach and these prob-
lems more fully in Appendix A.
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Our approach requires us to transform to Schridinger
form. The linearized plasma equation (3. 1) has the form

V-e(1)VE, (%) =0, «(¥)=wi(r) - w?-iwv. (3.9
It is easy to verify that ve(»)®,,(x) = ¢(x) satisfies
(V- vl =0, V() =leM]Hve(n] % (3.6)

[Take w?(v) c @2 for example; we assume stronger con-
ditions. | Now consider the inverse problem for the ra-
dial equation for P(x). Define h(N;; #), \, =2l +D -2, by

R(x; vy = vty (r) =[e(#)/ e T /29"1@2(”)

=[e(/e (O] 2, (). (3.7
Its radial equation is
(rd, + \yvd h(n; v) =u(P)h(x;; ¥), h(x; 00=1, (3.8)
where
w(r) =2V =[e() ] 2(rd, + X )rd [e(r) ]} /2 (3.9

This defines h(};; 7) uniquely for ReX, » 0. Notice that
h(x; 7y =[e()/€(0)]' /2. [From the point of view of the
inverse problem we are constructing a set {Z();; Mo
whose elements have the /-independent “property” u(v)
in common, and any one of the 2(X;; 7) could be used to
define it. | If w3(7) - w(0) =3 2y w,»™ (convergent for
¥<R), a0, then u(v) =3 pqu, 7™ (also for ¥<R), u,c C
if w satisfies the sufficient condition
(w? +30%) > 30t +sup [wf(r) - W3(0) .

r=<R

(3.10)

We can now apply the results of Secs. 1 and 2 (with J=1)
providing the data set {8(na)},.; can be deduced from the
measured data {Rdg In®,(R)};%;. From (3.7) we obtain
B(r,) = Rdg Inh(),; R)
=Rdy In®,(R) — [ +:Rdg Ine(R) for1=0,1,2,....
(3.11)
From the interpolation formula or more general prin-
ciples we know that 8(»,) -0 as I -, Thus
B(7,) =3 Rdg Ine(R) = lim[! — Rdy In®,(R)].

[

{(3.12)

It follows that the sets {8(A)};2, and {Rdx In®,(R)};%; can
be uniquely determined from each other via Egs. (3.11)
and (3.12). [The fact that ®,(#) = const played an essen-
tial role. ] So the inverse plasma problem has been re-
duced to interpolating the known values {8(},), 8(- A},
B{-= ) =B(";) + 1, by equation (2.4) with J=1 provided
that {8(x,)}7., is included in {8(na)}7.,. This is a restric-
tion “a’": both D/q and 2/a must be integers.

If we want to apply the constructive approximation
procedure given in Sec. 2 following Eq. (2.6), we must
introduce a further restriction on “a” for the case D=2,
This is because then X, = 0 but 8(0) #{B(na), (- na)}l,,.
We must now fit 3(0) by adjusting a nonphysical value
in the set. It seems reasonable that this can be done
but we have no proof. If, however, {8(za)}Y, is to con-
tain nonphysical points for D=2 we must have 1/a
integer.

The possibility of nonphysical points in these kinds of
inverse problems was first noticed by Sabatier. It may
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turn out that there is a way to adjust them so that the
approximation procedure will become stable. The quas-
tion is open as for as we know.

We have given necessary but not sufficient conditions
for €(7) to be real. The absence of sufficient conditions
on B(x) which guarantee eﬁ(?’) real and positive leaves
our solution incomplete. If ¥(7) % Re{{wv(0) +iwi(0) - iw?]
X[h(xg; Pz 0, v=1(0), we could argue that the colli-
sion frequency depends on ». This is, of course, not
really a satisfactory replacement for what is needed.
(v(0), w,(0} can be determined from v(R), w,(R) but not
from &,(x). ]
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APPENDIX : RESUME OF DEGASPERIS’ APPROACH
AND DISCUSSION OF PHYSICAL APPROXIMATIONS

In 1970 Degasperis® solved this inverse problem for
the two dimensional plasma at the “fixed” frequency
w -, He expanded the radial logarithmic derivatives
of the electric potential at fixed radius in an asymptotic
Taylor series (essentially powers of w™, about w =),
He was then able to show that the (27 — 1)th algebraic
moment of the ion density is determined by the /th har-
monic component of the first order coefficient of that
Taylor series. (In his paper the ion number density,
n(7), is often mistakenly called an electron density.
The correct meaning is given in his appendix. ] This al-
gebraic moment problem is soluble and is in fact closely
related to the inversion of the Hilbert matrix. Degas-
peris also showed that similar relations held for the
higher order Taylor coefficients and thus that the in-
verse problem was overdetermined, given data at all
frequencies.

The physical objections to working at the asymptotic
limit w —= are that the neglect of the magnetic field
and the use of the fluid approximation for the plasma
are then invalid. We discuss this somewhat more fully
in Sec. 2.0 of Ref. 1. It must be shown that there exists
a range of frequencies w where the asymptotic equations
are valid simultaneously with the physical approxima-
tions embodied in the linearized plasma equation (3.1).

Another consideration of practical importance is that
data must be measurable, at least in principle, with
a good signal-to-noise ratio. The measured data must
show enough sensitivity to the ion distribution to pro-
duce significant differences for different distributions.
The very convergence of the asymptotic Taylor series
itself shows that in this limit data tends to zero; in this
limit the ion distribution hardly counts. In fact, the
only way to get significant data for w ~ would be to
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interpolate and/or extrapolate data at finite frequencies
in some self-consistent (and unknown) way.

For the plasma the most sensitive frequency range
is controlled by the maximum and minimum (expected)
values for the ion density. This is the range where re~
sonant oscillations are likely to occur. However, if the
interaction is too big, the linear approximations may
be invalidated. The only way to check this seems to be
self-consistency; i.e., check to see if the neglected
terms are really small, Discussions of what is involved
in the linear approximation are absent from the publica-
tions of Degasperis? and Barston. ! Since this may be
important in physical applications we refer the reader
to Ref. 16 for more detailed discussion.

*This work has been done as a part of the “Recherche Coopér-
ative sur Programme No. 264, Etude interdisciplinaire des
problémes inverses.”
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A new topology is proposed for strongly causal space-times. Unlike the standard manifold topology

(which merely characterizes continuity properties), the new topology determines the causal, differential, and
conformal structures of space~time. The topology is more appealing, physical, and manageable than the
topology previously proposed by Zeeman for Minkowski space. It thus seems that many calculations

involving the above structures may be made purely topological.

1. INTRODUCTION

In 1964 Zeeman published a paper' showing that the
causal structure of Minkowski space M, already implied
its linear structure. Causality was defined by means
of a partial ordering on M, and it was shown that the
group of automorphisms of M preserving the ordering
is generated by the inhomogeneous Lorentz group and
dilatations. (This is the khomothecy group H of M, com-
prising all affine automorphisms which preserve the
Lorentz metric up to a constant factor,) He then pro-
posed?® that the conventional (positive definite) metric
topology /4 of M should be replaced by a new topology
7 (the fine topology) which is related to the causal
structure. 7 has the following properties?®;

(1) 7 is defined to be the finest topology on M which
induces the one-dimensional Euclidean topology on every
straight timelike line, and the three-dimensional
Euclidean topology on every spacelike hyperplane. Thus
7 is finer (and, in fact, strictly finer) than /.

(2) 7 incorporates the (homothetic) Lorentz structure
at the primitive level of topology (rather than, as is
conventional, affev imposing linear structure); the
homeomorphism group of 7 is H.

(3) If the path of a particle is interpreted as a 7-
continuous map y of the unit interval I into M such y
preserves order, the image of v is piecewise linear,
consisting of a finite number of straight timelike line
segments, like the path of a free particle undergoing
a finite number of collisions.

(4) 7 is Hausdorff, connected and locally connected,
but not normal, locally compact or first countable.

This new topology obviously has several advantages
over the standard one, which merely characterizes the
continuity of M. Its very definition (1) is more intuitive-
ly appealing than that of ///, since it requires a set to be
open when (a) every inertial observer “times” it to be
open,” and (b) every section of time simultaneity inter-
sects it in an open set, The definition of // involves 4—
spheres in space—time, which have no particular physi-
cal meaning. The idea of (2) incorporating causal,
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linear and even homothetic structure already in a topol-
ogy /i is certainly physically appealing, and the idea (3)
that the requirement of coniinuity of a curve should al-
ready restrict it to be phy}sically meaningful is fascinat-
ing. However, there are disadvantages:

(1*) A 3~-dimensional section of simultaneity has no
meaning in terms of physically possible experiments.
Also, the use of s/raight timelike lines in defining 7
suggests that 7 from the beginning has been equipped
with information involving inevtial observers, so that
the emergence of linear structure in (2) is less surpris-
ing. (Though in fact this is not the reason for its
energence. )

(2*) While the isomelry and conformal groups of M
are certainly significant physical, it is not necessarily
clear that this is so for the howmothecy group of M.

(3*) The set of 7-continuous paths does not incorpo-
rate accelerating particles moving under forces in
curved lines.?

(4*) 7 is technically complicated.? In particular, the
fact that no point has a countable neighborhood basis
makes 7 hard to calculate with.

Zeeman suggests® that criticism (3*) could be over-
come by generalizing his theory to general relativity,
where the image of y should become piecewise geodesic
(thus accounting for gravitational forces). This gener-
alization has recently been carried out by Gobel® who,
for strongly causal space—time manifolds, replaced
(1) by replacing “time axis” and “spacelike hyperplane”
by “timelike geodesic” and “spacelike hypersurface.”
He then proves that Zeeman’s conjecture about the
generalization of (3) is correct, and, with the help of a
theorem of Hawking® relating causal to differential
structure, that the homeomorphism group is again the
homothety group.

However, even in general relativity, particles need
not move along geodesics since, for example, they may
be charged and an electromagnetic field may be present
(and this applies in special relativity also).® Thus the
generalization to general relativity of the topology 3
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(we also call the generalizations #) only partially
answers (3*), and leaves the other criticisms (1*), (2%)
and (4*) as before.

In this paper, we propose a new topology /° for
strongly causal space—times M which share the attrac-
tive features of the topologies 7, but which also answer
some of the above criticisms and have additional attrac-
tive physical features. The topology P, the palh topolo-
gy, has the following properties:

(1’) P is defined to be the finest topology on M which
induces the Euclidean topology on arbitrary (not neces-
sarily smooth) timelike curves.

(27) The topology P incorporates the causal, differen-
tial, and smooth conformal structure; the homeomor-
phism group of /2 is the conformal group.

(3’) The set of P-continuous paths incorporates al!
timelike paths. In fact, the set consists of all “Feynman
paths” (described below).

(4') P is still technically complicated, but less so than
7. Indeed, / is Hausdorff, connected and locally con-
nected, but not normal or locally compact. However,
every point has a countable neighborhood basis, and this
makes / much easier to deal with than 7.

The definition (1’) has an immediate physical inter-
pretation which is more appealing than (1): a set is open
whenever every observer (accelerated or not) “times”
it to be open. No nonphysical experiments are required.
Also, (1) does not require any smoothness properties
to define /, so that the emergence of smooth and con-
formal structure is more surprising. Again, (2')
answers criticism (2*), and (3’) shows that all possible
observers, accelerated or not, are described by /-
continuous curves. The fact that /° has a countable
neighborhood basis at each point makes it much easier
to deal with than 7. Thus the computation of the set of
all f-continuous paths becomes relatively easy (Zeeman
only finds the order preserving paths for 7).° These
paths are (possibly accelerated) “Feynman paths” which
zigzag with respect to time orientation, like the
Feynman track of an (accelerated) electron. This same
“basis” property makes it relatively easy to find the
general properties of /. In fact, /is path connected
and locally path connected, but not regular or paracom-
pact, in addition to having the properties mentioned
above. The relative ease of calculations with / suggest
that it could be usefully applied to “practical” problems
in general relativity. If one could show (using the basis
property) that a space—time must admit a (local or
global) f-~homeomorphism, this would mean that the
space—time admits a (local or global) conformal
diffeomorphism.

Thus we suggest that, while Zeeman’s topology” and
its general relativistic analogs® represent a radical and
fascinating departure from the conventional schemes,
our topology / has all of the required features, but is
more intuitively appealing, manageable, and physical.
Section 2 is devoted to standard results and definitions.
In Sec. 3, timelike paths (not necessarily smooth) and
Feynman paths are defined, and the topology is de-
scribed. In Sec. 4 it is shown that / is not comparable
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to 7, and the important basis property is proved. This
is used to show that the set of continuous paths is the
set of Feynman paths, and to prove various general
properties of P. In Sec. 5 it is shown that © carries

the chronological structure of M, and in Sec. 6, that /
carries the causal, differential, and conformal struc-
ture of M. The final theorem is that the homeomorphism
group of )/ is the group of conformal diffeomorphisms

of M.

The burden of the argument is as follows. First we
show that /-homeomorphisms take timelike curves to
timelike curves. Then we show that this implies that
JF-homeomorphisms preserve causal relations. This is
used to show that they are diffeomorphisms preserving
the null cones, that is, conformal diffeomorphisms.

2. STANDARD DEFINITIONS AND RESULTS®

Space—time is taken throughout to be a connected,
Hausdorff, paracompact, C” real four-dimensional
manifold M without boundary, with a C* Lorentz metric
(only a few orders of differentiability will actually be
needed) and associated pseudo-Riemannian connection.
M is taken to be time orientable throughout (that is, M
admits a nonvanishing timelike vector field). For sub-
sets A and B of M, the chronological futuve I'(A, B)
of A relalive {0 B is the set of all points in B which can
be reached from A by a future directed smooth (i.e.,
C>) timelike curve in B of finite extent. The causal
Sfuluve J(A,B) of A velalive (o B is the union of AN B
with the set of all points in B which can be reached from
A by a future directed smooth causal curve (i.e.,
nonspacelike curve) in B. The fulure horismos E'(A,B)
of A relalive lo B is defined as J*'(4, B) —-I*(A, B). These
definitions have duals, often regarded as self evident,
in which “future”is replaced by “past” and “+” by “-.”
If A is the singleton set {p} for a point p M, we write
I'(p, B) rather than I"({p}, B), for example, and I'(p)
for I"(p, M). The relations p < I*(g), pcJ*(g), and
p € E*(g) will sometimes be written ¢ <p, ¢<p, and
q — p, respectively. These last relations are respec-
tively called, chronological, causal, and horismos
relations. The definitions and results® below will be
needed in this paper. They are only stated in the
generality needed:

2.11f [/ is an open set, g < I'(p, |/) implies p
€I(g,!/), and conversely. Similar results hold for J
and E. I'(p,)/) and I'(p,|/) are open sets. In particular,
these statements hold for I'(p) and I"(p).

2.2 If |[/is an open set, either
q€J(p, V), rel'(q, V)
gel'(p, V), redq,l/)

2.3 Let T,(M) denote the tangent space of p € M, and
exp: T,(M)—~ M, the exponential mapping. Then there
is an open neighborhood N of the origin of TP(M) such
that {/=exp(N) is an open convex normal neighborhood
of p e M. That is, every pair of points in // can be
joined by a unique geodesic curve in {/, and geodesics
in {/ through p are the images of straight lines through
the origin in NC T,(M). Further, p possesses a neigh-
borhood basis of open convex normal neighborhoods.

imply reI'(p, /).
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Furthermore, the normal neighborhoods may be taken
to be normal neighborhoods of every point in them. Let
€ >0 be sufficiently small so that the Euclidean open
ball B of radius ¢, centered at the origin, is contained
in N. We define B,(p,€) =exp(B), and whenever such a
set is referred to, it is assumed that € >0 is sufficiently
small, '°

2.4 Denote the normal coordinates of ¢ € {/ by x'(q),
where i =0, 1, 2, 3, and x° is the time coordinate,
x', x*, x° the space coordinates. Then x*(p)=0 and

I, U =1g € U|(@)? - ((2))? - (x*(q))®
~(g)2= 0, ¥(g)= 0}

J(p, /) satisfies the same condition except that x°(g)
<0, and I *(p,{/) are defined analogously, except that
all inequalities are strict. Define, for any open set [/,
the cones (possibly) with and without origin by

c(ﬂy V):I*(f), V)UI_(P: ’/))
K(P, V):C(P> V)U{p})

and, for an open convex normal neighborhood (/ of p,
define

L(p,e)=BLp,e) NK(p, ).

Note that L, (p,e) - {p} is nonempty [the point with coor -
dinates (3¢,0,0,0) belongs to B,(p,e) N I*(p, /)] as is
B(p,€) = L,(p,€) [take coordinates (0,0,0,5¢)].

2.5 A space—time M is chvonological, if there is no
closed smooth future (or past) directed timelike curves
in M. Equivalently, M is chronological, if and only if,
I(p)NI(p)=¢ for all p € M. Analogously, M is causal,
if there are no future (or past) directed causal curves.

2. 6 Denote the manifold topology of M by /. Consider
the collection of all sets of the form I'(p) N I'(g) for
p,q<€ M. These sets are open and (together with,
possibly, the empty set ) clearly form a basis for a
topology on M. The topology is called the Alexandroff
topology A of M, and in general, is coarser than /).

2.7 A causalily neighborhood D of a point p € M is an
/M -neighborhood of p such that, whenever y: F— M is a
smooth causal path, y (D) is connected. (Here F is a
connected interval of the real line R.) M is sirongly
causal al p, if and only if, p has a neighborhood basis
{D_(p)I = € A} such that, for each xcA, D.(p)isa
causality /) -neighborhood. M is sirongly causal, if it is
strongly causal at each point. Another useful charac-
terization of this property is given by the following
consequence:

M is strongly causal <= M is 4 -Hausdorff <=4 =/}

2.8 If {/ is an open convex normal neighborhood of
be M, E*(p,l/) consists of future directed null geodesics
in {/ from p, and E*(p, (/YU E(p,(/) is the image of the
null cone NN N, < T (M) in the neighborhood N of the
tangent space T,(M) under exp.

2.9 The metric g at p € M is determined up to a con-
stant by the tangent null cone N, C T,(M).

2.10 The isomelry, homothecy and conformal groups
of M are those groups of C* diffeomorphisms of M which
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preserve, respectively, the metric tensor, the metric
tensor up to a consfant factor, and the metric tensor
up to a {possibly variable) factor.

3. THE TOPOLOGY p

3.1 Let F be a connected interval of the real line R.
(The singleton closed set [x, x] is excluded. For our
purposes we may take F to be bounded, for there is an
order preserving C* diffeomorphism tan™': R
—(=7n/2,7/2). Thus F is a finite, closed, open, or half
open half closed interval.) A map y: F— M is called a
palh, and its image a curve (the same symbol v often
being used for either, it being clear from the context
which is meant). A path y is confinuous if y is continu-
ous with respect to // and the topology on F induced from
the standard one on R. A point ¢ € M is said to be an
initial end point of a continuous path y: F— M, if for
every neighborhood N of g there is a {, € F, such that
le Fand t <!, implies y({) € N. If a continuous path y
has an initial end point ¢ £ y(F), one may find a new
continuous path y': FU{/,}— M such that y'| =y and
v'({,) =¢q where {, is the greatest lower bound of F. We
shall therefore assume without 1loss of generality that
continuous paths contain both their initial and final
endpoints if they have them.

3.2 A path y: F— M is called® future divecled and
timelike al Iye F, if and only if y is continuous and there
is a connected neighborhood U of {, in F, and an open
convex normal neighborhood {/ of p =y({,) such that

le Uand { <ty=>y({)e I'(p,{);
(e Uand ( >ty==y(t) € I'(p, ).

A path is called future divected and timelike, if it is
future directed and timelike at each {, F. Similar dual
definitions hold for “past directed.” A path is limelike
at l,, if it is either future or past directed and timelike
at {,, and limelike, if it is either everywhere future
directed, or everywhere past directed and timelike. A
curve is timelike, if it is the image of a timelike path.

Proposilion 3.3: Let y: F— M be a continuous path
which is timelike at each /[, intF. Then y is a timelike
path.

Proof: Suppose y is future directed at (€ intF. Let
U and [/ be as above. Suppose there were a f, € U with
{, >, such that y was past directed at {,. The coordinate
x° of () will be a continuous function of /. Thus there
will be some /, such that x°(y({,}} is the maximum value
of x°(y([ty, #,])). Since y is future directed at {,, /, must
be greater than /,. Similarly, /, would have to be less
than /,. Consider the point g =¢(¢,). On I'(q, (/) the
coordinate x° would be greater than its value at ¢. This
would mean that y([{,,/,]) could not be timelike at /,.
This shows that y must be future directed for all /€ U
with / = /,. A similar argument shows that y must be
future directed for all / € U with /< {,. Thus, the set of
points at which y is future directed is open in intF.
Similarly, the set on which y is past directed is open.
Because F is connected, y must be either everywhere
future directed or everywhere past directed in intF.
Assume, without loss of generality, that y is future
directed. Suppose that ¢ =y({,) is an initial endpoint.
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Let U be a connected neighborhood of ¢, in F and let {/
be a convex normal neighborhood of g. Let {,c U with
t,>t,. Then y{(¢,,t,) < I(r,{(}), where r=y(i,). There-
fore, by continuity q € I'(», {/) =J(»,{/). Thus, »

€ J*(g, (/). However, by a similar argument one can
find a £, € ({,,,) such that ¥(¢,;) € J*(q, () NI (r, ).
Therefore, by 2.2, »< I'(g,{/). Hence y is also future
directed timelike at its endpoints. s It follows from

2.2 and 3.2 that a timelike path is locally 1—1, that

is, each f, € F has a neighborhood V such that |, is
1—1. Notice that timelike paths need not be smooth.
The point of this definition is that /' will be defined
independently of smoothness properties, but neverthe-
less smooth structure will emerge from / (Theorem 5).
Curiously enough, a path may be timelike and smooth
without being timelike. Let y: R— M be the path defined
in Minkowski space (usual coordinates) by ()

=(¢, sin{, 0,0). Then y is timelike and smooth, but not
smooth timelike, since it is null at the points {=nw for
integral n. However, I'(A, B) and I'(A, B), as defined by
smooth timelike curves, agree with I'(A4, B) and I'(4, B)
as defined by timelike curves.

3.4 We now define a class of paths which are similar
to timelike paths, in that their curves are constrained
to lie within local light cones, but which may zigzag
with respect to time orientation. A path y: F—~ M is a
Feynman path, if y is continuous and, for each {,€ F,
there is an open connected neighborhood U of {,, and an
open convex normal neighborhood {/ of p =(f,) such that

HU) TK(p, U).

A locally 1—1 Feynman path will be called a Feynman
track. Suppose y is a Feynman track, 1—1 in a neigh-
borhood V of {,. Let W be an open connected neighbor-
hood of {, in UN V. Then, using the fact that W is con-
nected, and that ¢/, is 1—1 and continuous, it is easily
shown that y is either timelike at ¢, or (W) I'(p, {/)
U{p}, or y(W)CI(p,(/YU{p}. Obviously timelike paths
are Feynman tracks, but there are many nontimelike
Feynman tracks.

3.5 Suppose vy, is a timelike curve with future end-
point ¢, and v, is a timelike curve with past endpoint ¢.
Evidently the union y, Uy, is also a timelike curve,
which may be parametrized as a future or past directed
timelike path. Any such path will be called a product
path y,v,, and qualified with “future directed” or
“past directed, ” according to the choice of the direction
of the parameter. If y, is as before, but with y, now
with future endpoint ¢, we may similarly define product
paths, denoted ﬂ =1y, which are timelike everywhere
at y™'(g). However, mz is always a Feynman path.

3.6 Define a new topology (the path topology) P of M
by specifying the collection P of open sets of the topolo-
gy as follows: P is the finest topology satisfying the
requirement that the induced topology on every timelike
curve coincides with the topology induced from /.

Thus, if a set ECM is P-open, for every timelike curve
v there is an Oc /) with

ENny=0nNy.

Conversely, if E satisfies this condition, it is /-open,
and P is the largest collection of such sets. Obviously
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Oc/l implies Oc 2, so P is finer than /. We shall see
below that it is strictly finer, and that /is not com-
parable to the general relatively analog of 7.

4. GENERAL PROPERTIES OF

Here we show that /is strictly finer than /, but not
comparable to 7, and find an explicit neighborhood basis
for P. Then we show that the /-continuous paths are
Feynman paths, and various general properties of /?
are proved.

Proposition 4.1: Let y: F— M be a path. If y is -
continuous, y is // -continuous. If y is timelike, y is
P-continuous.

Proof: The first assertion follows since P is finer
than /. For the second, note first that E ¢ /7 implies
EnNy=0n+y for some Oc/. Hence y"YE)=y {ENy)
=y (0Ny)="0). But y is timelike and so, in particu-
lar, continuous. Therefore y }(E)=5"*(0) is open. .

Proposilion 4.2: Sets of the form K(p), K(p,{/), and
L. (p,€) are P-open.

Proof: Let y be any timelike curve. Suppose first that
p €y. Then by definition, y CI'(p) UI'(p) U{p}=K(p),
so y UK(p)=vUM. Suppose next that p ¢ y. Then y
NK(p)=y N I(p)UT(p)). In either case, yN K(p)
=y N O for some Oc/l. The proof that K(p, (/) is P-
open is similar (replace M by {/), and the proof for
L (p,¢) follows because B,(p,¢), being /) -open, is
a fortiori P-open. L]

This proposition shows that / is strictly finer than
M, since, for example, p € K(p, (/) has no /} -neighbor-
hood contained in K(p, (/). We will show further that /2
is not comparable to Zeeman-type topologies 7. Define
S to be the set [B,(p,€) = [E*(p, () UE(p,())]], where
€ >0 is smaller than ; [and also sufficiently small for
B,(p,€) to make sense]. Lety ©// be the curve defined,
in normal coordinates, by the timelike path y=[—¢,¢]
—{{, with equation v(¢{)=({, £?, 0, 0). Consider the set
R=(S —y)U{p}. Then any timelike geodesic will have
an open intersection with R, as will any spacelike
hypersurface. Therefore R is 7-open. However, R is
not P-open since RNy ={p}, which is closed. On the
other hand, K(p, (/) is /-open but not 7-open, since the
intersection of any spacelike hypersurface containing
b with K(p, (/) is {p}.

Theorem 1: Sets of the form L, (p,€) form a basis for
the topology P.

Pyroof: We must show that, for any /-open set E and
any p € E, there is a /-open neighborhood of p of the
form L (p,€) contained entirely in E. Suppose this to
be false. Then there is an open convex normal neighbor-
hood {/ of p such that, for every ball B,(p,¢c) C{/ and
corresponding L, (p,¢), there is a g L (p,€) with ¢ ¢E.
Fix such a set L (p,¢,) and assume, without loss
of generality, that it contains a ¢,, not in E, with ¢,

e I'( p, (/). [If there is no such q,, all points of the re-
quired type lie in I'(p, (/), and the proof is as before
with I*, I" and “future,” and “past” interchanged. | Since
p belongs to the open set /(¢q,,{/), we can finda 6 >0
with B,(p,d)CI(p,//). Let €, be any positive number
satisfying €, < min(e, z¢,). There is a p,€ L (p,¢,) with
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g, & E. Assume without loss of generality that ¢,
eI'(p, ). [If all g, of the required type lie in I°(p, {/),
discard ¢, and start with ¢,, interchanging I, I and
“future,” “past.”] Construct ¢, < 3¢, and ¢, Lifb,€s)
analogously, and inductively construct ¢,,, < 3¢, < 27,
and q,., € LU(p,6n+1). This way, possibly after discard-
ing a finite number of points, we obtain a sequence
S={q,} of distinct points SCI'(p,(/) and ST E, with the
property that consecutive points ¢, and ¢,,, can be joined
by a (unique) timelike geodesic curve. Form a past
directed timelike product path ¢ =(g,9,)X{q.q,) - - - as in
3.5. Because ¢,,, <27, {g,} converges to p in the
topology /1, and thus { has past endpoint p. From 3.1
there is, therefore, a unique timelike curve y =¢ U{p}.
Since E is P-open, ENy= 0Ny for some Oc /. Since
StE, STENy=0ny, therefore SCM - (0N ) =(M - 0)
U (M ~y). But SCy, so SEM —y; therefore, S={g,}
CM-0. But M -0 is /) ~closed and {g,} is /i -conver-
gent to p, therefore pe M -0, sop c—% 0. Hence, p eja OonNy
=EnNy. But p belongs to both E and y, so we have a
contradiction, and the theorem is proved. s

This basis property, which has no analogue in the
fine topologies 7, makes the path topology /-much more
manageable. Below, it will be used to prove all the
basic general properties of /. But first, we shall find
the set of all /-continuous paths.

Theovem 2: A path y: F— M is /-continuous if and
only if it is a Feynman path.

Proof: Suppose first that y is a Feynman path. We
must show that, for each (€ F, the inverse image of
each P-neighborhood of y{/,) is a neighborhood of {,. Let
{/ be the open convex normal neighborhood of p =v({,)
used in the definition 3.2. Let {L (p,¢)} be a /-neigh-
borhood basis of p for all sufficiently small € >0, Then
Y UL (D, N =y (K (p, () VB (p e =y (K(p, )

Oy Y (B p,€)). But vy 1(K(p, (/) contains an open con-
nected neighborhood U of /,, and y ' (B,(p,€)) is an open
neighborhood of /, (because y is /} -~continuous). Thus y
is f-continuous.

Suppose next that v is /-continuous, and let {/ be an
open convex normal neighborhood of p =y{/,). Then
K(p,l)) is a P-neighborhood of p, so y " (K(p,//)) is a
neighborhood W of {,. Let U be an open connected
neighborhood of ¢, in W. Then ¥(U) T K(p,{/), and v,
being also //-continuous, is a Feynman path.

Obviously / is first countable, since a countable
neighborhood base at p € M is given by {L (p,1/n);
n=N, N+1...} for some integer N. Because M admits
a countable covering {[,/i} by normal neighborhoods, /
is also separable {take points with rational coordinates
in {/,). Note that sets of the form K(p, /), I'(p, (D),
I'(p,l/)and L (p,e) are P-path connected, since any
pair of points in any of these sets can be joined by pro-
duct curves y,y, or ﬁz of the type discussed in 3.5.
Thus / is locally path connected, because every /-
neighborhood E of P ¢ M contains a neighborhood of the
form L//p,€). Also it is not hard to show that / is path
connected. Indeed, since M is //} -connected and M is
a manifold, M is /] -path connected. If p, g < M are any
pair of points, they may be joined by an / -continuous
path y: I— M from the closed unit interval I into //. It is
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then easy to approximate y(I) by a Feynman path, show-
ing that M is P-path connected. Before proving further
general properties, we need:

Proposilion 4.3: L(p,)’=L,(p,€) -~ (@B, p,€)
N oK(p,)). (Here the lefthand side denotes the /-
closure, and all other topological symbols refer to /. )

Proof: Certainly Lu(p,e)pc L. (p,€) since [/ is finer
than /. Now points ¢ < 3B, (p,€) N AK(p, (/), have /-
open neighborhoods of the form L (g, t€) which do not
meet L (p,¢€), so L(p,e)PCL(p,e)~(?B(p,¢)
NaK(p,{/)). If r€ M is in this latter set, every /-
neighborhood of » contains a /-neighborhood of the form
L,(», 6) which is easily seen to meet L (p,¢). n

Theorem 3: J°is first countable and, separable. /2 is
Hausdorff, path connected and locally path connected
{and so a fortiori connected and locally connected).
However, /is not regular, normal, locally compact
or paracompact,

Proof: The first sentence has been dealt with above.
P is Hausdorff because / is finer than /4. The connecti-
vity properties have been dealt with above. To show
that P is not regular, consider the /-neighborhood
LU({), €) and show that p has no /-closed neighborhood
S contained in L//p,€), using the basis property and
4.3. To show that / is not normal, consider the dis-
joint P-closed subsets L//(p,€)P and [2B/Ap,e)

N AK(p, )], and show, using the basis property, that
these sets cannot have disjoint /~open neighborhoods.
To show that /is not locally compact, use the fact that
closed subspaces of compact sets are compact, the
basis property and 4.3, and note that Lu(p,c}p is not

/M -closed, so certainly not // ~-compact, hence not /-
compact, since /is finer than /. P cannot be para-
compact because paracompact spaces are normal. ! »

5. 2 AND CHRONOLOGICAL STRUCTURE

We wish to prove P -homeomorphisms #, take time-
like curves to timelike curves. Obviously / takes /-
continuous curves to /-continuous curves, but, of
course, /~-continuous curves (Feynman paths) need not
be timelike. We single out a subclass of f-continuous
curves, by adding restrictions made only in terms of
P. This subclass will coincide with timelike curves.
This will enable us to prove that for strongly causal
spacetimes f-homeomorphisms preserve or reverse
causal relations.

Definition 5.1: A path y: F— M is said to be regular,
if and only if:

{A) y is P-continuous and locally 1—1.

(B) For every {,c F, there is a connected neighbor-
hood U of {, and a /-neighborhood II, of p =v({,), such
that:

) yU)cn,

(2) Whenever /, < intF (the interior of F) and a,be U
satisfy a <{, <b, every /P-continuous curve in I, joining
y{a) to y(b) contains p = y({,).

Proposition 5.1: A P-homeomorphism takes regular
paths to regular paths.
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Proof: The definition of regularity involves only set
theoretical and P-topological notions. Since % is a -
homeomorphism, it preserves all required properties.

[ ]

Theovem 4: y: F—~ M is timelike, if and only if, v is
regular.

Proof: Suppose first that y is timelike and, for
definiteness, future directed. By 4.1 y is /-continuous,
so satisfies (4) of the regularity condition. For f, < intF
let Uand // be as in 3.2. Set I,=K(p, (/) where p
=v(t,). From 4.2, I, is a P-neighborhood of p =y(¢,).
Since y is future directed and timelike, y(U)CH,.
Suppose next that a,b e U satisfy a <{; <b. Since y is
future directed y(a) € I'(p, (/) and ¥(b) € I'(p, [/). Let ¢
=[7,s]— 1, be a P-continuous path with p{a) =¢(») and
y{b)=¢(s). Since ¢ is /-continuous, ¢ is, by 4.1, con-
tinuous, so £([r,s]) is connected. If p & ¢([r,s]), t([r,s])
CI'(p,HNI(p,L), then g([r,s]) is contained in a dis-
joint union of open sets, and meets both. This contra-
dicts the connectivity of £([,s]), so in fact, p € ¢([r,s])
and y is regular. An analogous proof holds if y is past
directed and timelike, so the first half of the proposi-
tion is proved.

Suppose next that y is regular, and that I, is a /-
neighborhood of p =y({{,) satisfying the required condi-
tions. Because y is P-continuous, y is continuous.
From Theorem 1, p has a /-neighborhood of the form
L,(p,¢) contained in II,. Choose an open convex normal
neighborhood {/ of p with (/C B, (p,€). Then the -
neighborhood K(p, (/) of p is contained in L, (p,€). Since
y is P-continuous, y K(p, (/)) is a neighborhood
of t,. Let U Cy Y (K(p,(/)) be a connected neighborhood
of 4, such that y: U— M is 1—=1. Then y(U) CK(p, (/).
Assume now that /< intF, and choose a,b < U with
a <ty <b. Since y is 1—1 on U, both y(e) and y(b) lie in
I'(p,(HuI(p,l)). Assume for definiteness that y{a)

e I'(p,{/). Then y(b) cannot belong to I'(p, (/) also, since
otherwise, in view of the /-path connectivity of I'(p, {/),
there would be a P-continuous path in I°(p, (/) which
joins y(a) to ¥(b) but which does not contain p since
pdI'(p,l)). Therefore, yla)e I'(p, (/) and y(b) € (p, ).
Let U; and Uy denote the disjoint connected intervals
{te Ult <i,} and {t € UlL >1,}, respectively. Since y is
1—1, UYTK(p,{f), and v(U;) and »(U) both belong to
the disjoint union I(p, (/) U I'(p, (/) of open sets. But y
is P-continuous, hence continuous, therefore y(U;) and
y{Uy) are connected. However, we have just shown that
y(U;) meets I'(p, {/) and v(U;) meets I'(p,{/), so in fact
wU) S I(p, (/) and AU < I'(p, /), therefore y is future
directed and timelike at /, € intF {(or past directed

and timelike at ¢, < intF). Applying the same reasoning
to each /, € intF, we conclude that y is 1—~1 and timelike
at each /,c€intF and therefore, by proposition 3.3, y is
a timelike path u

Hewre and henceforth, M is always assumed
chronological .

Proposition 5.3: A P-homeomorphism # takes cones
C(p) bijectively onto cones; h(C(p)) = C(h(p)).

Proof: There is a timelike path v joining ¢ to p if and
only if ¢ € C(p). By proposition 5.1 and Theorem 4, the
image path hgy is timelike, and it joins k(g) to h(p).
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Therefore h{g) € C(h(p)), and since k is bijective, it
maps C(p) bijectively onto C(k(p)).

Proposition 5.4: For a fixed € M, a f-homeomor-
phism % maps I'(») [respectively I"(7)] bijectively onto
either I'(h(#) [respectively I'(h{r))] or I"(k(7))
[respectively I*(a(r))].

Proof: Suppose first that there is a p € I'(») with k(p)
e I'(h(¥)) and let g € I(»). Join p to » and ¥ to ¢ by past
directed timelike paths 1, respectively; and form a past
directed product path y =7¢. The image curves k7,
h, and hyy are timelike, and since k(p) e I'(h(7)}, kg
is past directed. Therefore h,y is past directed and
timelike. Hence, k(g) € I'(h(7)) for every g I'(r). A
similar construction starting with a given g € I'(») shows
that a(s) € I'(h(#»)) for all s € I'(¥). This completes the
“either” part of the proof. If there is no p € I'(») with
Rr(p) € I'(h(7)), a similar construction gives the remain-
der of the proof. -

Proposition 5.4: The previous proposition holds with
“a fixed » € M” replaced by “every re M.”

Proof: Suppose that, for a given r€ M, ) preserved
time orientation, h(I'(#)) =I'(h(»)) and h(I"(#»)) =T (h(¥)).
Let A CM be the set of points at which % preserves time
orientation. Then certainly p € A whenever C(p)N C(¥)

# (. We assert that A is //} -open. Indeed, choose a
point s € I'(¥). Then v € I'(s) and since I'(s) is open,
there is an open neighborhood U of » with UCI(s). Then
for any g € U, I'(q) N I'(») contains s, so a fortiovi

s e Clg)N C(7). Therefore gc UCA, and A is /f ~open.
The set M - A of points at which 7 is time orientation
reversing is also open. But M is connected and ¥c A,
so M =A. If there is no » € M satisfying the above con-
dition, every point satisfies the opposite condition. a

Proposition 5.5: A P-homeomorphism is an 4-
homeomorphism.

Proof: This follows immediately from 5.4 and the
definition of the Alexandroff topology.

6. © AND CAUSAL, DIFFERENTIAL AND
CONFORMAL STRUCTURE

The fact that /-homeomorphisms preserve or reverse
chronological relations enable us to prove that, for
strongly causal space—times, they locally preserve or
reverse causal relations, In particular, they preserve
null geodesics. It is then shown that /-homeomorphisms
are diffeomorphisms and, since they preserve null
cones, conformal diffeomorphisms.

Proposition 6.1: Suppose now and henceforth M is
strongly causal. Then a /-homeomorphism % is /) -
homeomorphism, and % maps null geodesic curves to
null geodesic curves,

Proof: Since M is strongly causal, it is a fortiori
chronological, hence % is a #-homeomorphism. Strong
causality also implies 4=/, so & is an //) -homeomor-
phism. Let D be a causality neighborhood of ¥ € M and
{/C D an open convex normal neighborhood of . Then
causality relations resfricted to D, agree with causality
relations velative to D. Now, in //C D the horismos
relations can be expressed in terms of chronology
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relations since, for p,q €{/, g— p is and only if

(¢ €p and 2z <g=>z <p]. Since & is a /} -homeomor-
phism, #({/) and k(D) are /| -open. Let {{’, D’ be respec-
tively, an open convex normal neighborhood and a
chronology neighborhood of h(7) with (/' €D’ Ch({/). In
V= vk Y ({/’), h will preserve chronology (and hence
horismos) relations or reverse them. Suppose y is the
unique null geodesic curve joining s,7€ (/N k™ ({/'). Then
{ €y if and only if ¥ — [ —s. Therefore (/) satisfies
(7)) — h(t) — h(s) or h{s)—~ h({) — h(¥), that is A(¢) lies on
a null geodesic joining k(7) to h(s). Hence, h(y) is a

null geodesic curve in k{{/) N (/.

Theorem 5: A //j -homeomorphism A: M — M, which
takes null geodesic curves to null geodesic curves is a
C” diffeomorphism.

Proof: (This is a theorem of Hawking® which is given
here in an improved from since it has never been
published.) Let {/ be a convex normal neighborhood and
y.i F;— /(i =1—4) be four C” null geodesic paths such
that:

(1) For each /, € F,, there is a unique null geodesic
curve A in // joining the point y,(¢,) to the null geodesic
curve y,.

{(2) For each /, ¢ F, there is a unique point ¢ € A, such
that g and y,(/,} lie on a null geodesic curve in //.

(3) For each point ¢ € A there is a unique /, ¢ F,, such
that g and y,(z,) lie on a null geodesic curve in //.

(4) The map i: F, XF,— F, defined by v/, ;) =1,
where /,, {; and /, are as in (1)—(3) above is C*, and is
such that 9y/2¢, and 2/3/, are nonzero.

For a sufficiently small neighborhood {/, the metric
differs by an arbitrarily small amount from that of
Minkowski space. Comparison with Minkowski space
shows that y; can be chosen to satisfy the above condi-
tions. Condition (4) cannot be satisfied in less than
three dimensions.

By the assumption of the theorem %(y,) will be four
null geodesic curves contained in &#({//). Thus one can
find four C* paths %;: F;—~h({/) which define the same
null geodesic curves as h(y ), but which may be para-
metr1zed differently. Let h F,— F, be defined by &,
=97 hy;. The maps B, will be continuous and monotonic
(because h preserves or reverses ordering). Therefore,
by Lesbegue’s theorem, they w111 be differentiable
almost everywhere. Let : F, ><F3 F be defined simi-
larly to ¢. Then

T4y 1)) = D (1), Rslls)). (D)

Differentiating (I) with respect to /; one has

87\@ o N
bl _—— = = ; N II
hattd, 15) TR hiils) {an

Because 1}3 is differentiable almost everywhere, it
follows from property (4) that %} exists and is continu-
ous. Similarly, by choosing different combinations of
null geodesic paths one can show that each ﬁi is C'.
Now, differentiating (II) with respect to /, gives

b ER
a; at,  ahal,

a3
Ay My “U)

Ry === niRs.
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Therefore, h, is C%. By repeating the above process, it
may be shown that each /i, is C*. In other words, ’
maps a C” parameter on a null geodesic curve to a C~
parameter.

Let y;. F;—~ {{ be four C* null geodesic curves, and
W < {{ be a neighborhood such that the map T': W—{an
open set of R* defined by T{q)=vy;(/*(q,(/)) is a C*
diffeomorphism. (Comparison with Minkwoski’s space
shows that this is possible for W sufficiently small.)
Pairs of the form (W,T) form a C* atlas for M which is
preserved by k. Thus & is a C” diffeomorphism. .

Covollary: A P-homeomorphism is a C”
diffeomorphism.

Theovem 6: A P-homeomorphism h is a smooth con-
formal diffeomorphism.

Proof: Since h is a diffeomorphism which, locally,
preserves null cones, and the metric g at p e M is de-
termined up to a constant by the tangent null cone, 7
preserves the metric up to a constant factor which

. N L}
must, Since 7 is smooth, be smooth.

Theovem T: The group Homeo (M, ) of P-homeomor-
phisms of M coincides with the group G of conformal
diffeomorphisms of M.

Pyoof: By Theorem 6, Homeo (M, 2) G, and it re-
mains to prove the opposite inclusion. Suppose E ¢ /2,
so that whenever y is timelike, EN y -0y for some
Oe/. Then if g€ G g(E)N gly) =g07 gy. But gy is
timelike because % is conformal, and £0 is /) -open.
Therefore, ¢yE < P, and g is P-open. Similarly, g is
P-continuous so g € Homeo (M, /).

It is instructive to give an example of a manifold for
which G is strictly larger than the homothecy group.
This is not the case for Minkowski space because,
though the infinitesimal conformal group is larger than
the infinitesimal homothesy group, the infinitesimal
conformal group cannot be exponentiated to give a global
action on Minkowski space. However, consider the
manifold N obtained by removing the following closed
set S from Minkowski space M.

S=1{ge M[[x(q)]* - [*N) ] - [P = [<*(@) "> 0.
The conformal group of this manifold is generated by
the homogeneous Lorentz group (including space, time,
and space—time reversal), dilatations, and the inver-
sion I given, in coordinates, by

x"{q)
(K@) = OGP - T = P - [¥(q) B

(u=0, 1,2, 3).

In fact, infinitesimal conformal diffeomorphisms
which are not infinitesimal isometries are rather rare.
DeFrise-Carter® has shown that the infinitesimal confor-
mal diffeomorphisms of Lorentz manifolds are with two
exceptions, essentially isometries. The exceptions
are Minkowski space and the “plane wave” space—
times. In the former, there are five linearly indepen-
dent infinitesimal conformal transformations which are
not isometries {the dilatations and “accelerations”),
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and in the latter, only one (the dilations). Only the
homothecy group acts globally on Minkowski space, but
N admits global conformal transformations which are
neither isometries nor homothesies.
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"Added in proof: We are grateful to Dr. M. Dobson for
pointing out that the inverted commas on ‘times’” are essen-
tial. The observor does not measure the length of a time in-
terval-—-many experiments are required to determine whether
a set is open.

84dded in proof: Ridiger Gdbel informed us that he has a
modification of the general relativity analog of 7 which al-
lows the effects of a fixed electromagnetic field to be incor-
porated. We feel it is preferable to use P, thus allowing all
timelike curves to be continuous (not just geodesics or par-
ticles with a fixed charge in a fixed field).

SAdded in proof: Actually the Zeeman topology, and Gobel’s
generalization admit spacelike curves as continuous curves.

A dded in proof: We may also assume {/ to be an open convex
normal neighborhood of each of its points.

UAdded in proof: It may also be of interest to note that [ is
not metrizable, since it is separable but not regular, and
neither can /7 arise from a uniformity, since it is not regu-
lar, therefore certainly not completely regular,
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We present exact expressions for the electromagnetic fields associated with arbitrarily charged Kerr—-Newman
black holes in a magnetic universe. In the particular case of charge Q =2 B, J, where B, is the magnetic
field parameter and J = ma is the angular momentum, exact expressions for the gravitational field are also
presented, while for arbitrarily charged black holes metrical corrections of order B, are evaluated.

In this paper we shall employ a method devised! by
Ernst in order to extend in two respects the study of
Kerr black holes in uniform magnetic fields initiated?
last year by Wald. First, we shall construct an exact
solution of the Einstein—Maxwell field equations, which
upon linearization in the magnetic field parameter B,
reduces to Wald’s approximate solution with charge
@=2B,J, which he identified as describing the end pro-
duct of charge accretion, In the second place, we shall
find the exact electromagnetic fields in the case
Q+#2B,J, but we shall work out the metrical correc-
tions only to the first order in B,. It should be men-
tioned that the exact solutions always approach asymp-
totically the Melvin magnetic universe,® for it is im-
possible to have a “uniform magnetic field” extending
throughout all space while asymptotic flatness is
preserved.

1. MAGNETIZING THE KERR-NEWMAN METRIC

The Kerr—Newman metric can be expressed in the
form

dv* A )
2 2B
as‘ =2 (A +do 2 aT
A sin?g @mr-e®)a > 2
-8 <d¢>—-——A————-dT , (1.1)
where
A=7r+a - 2mr-e?), Z=++a’coso, (1.2)

A= (7 +a?)? ~ Ad? siné,
By comparing our Eq. (1.1) with Eq. (2.1) of Ref, 1,
we can identify the fields
dg=2"1/2 (Kdﬁf +id9> , p=4AY2g4ing,
P=(AY2gind)1, f=-Asin*e/3,
w=2mr - e?) a/A.

(1.3)

The orthonormal components of the electromagnetic
field for a “locally nonrotating observer” are derivable
from a complex potential & such that

09
a6’

2®
Hy+iE;=—PAV? o,

~ (1. 4)

H,+iE,=P

while the complex gravitational potential ¢ is defined
by
E=f- || +io, (1.5)

where ¢ is the twist potential. If one introduces the
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symbol
2 9
—Al/2 % L. 9
V=alZ oo i, (1.6)
the twist potential may be evaluated by using the
equation
—p VW =1iVp +3*Vd ~ dVI*, (1.7

For the Kerr—Newman metric the complex potentials
® and &£, which were displayed in Ref. 1 also, may be
written in the following form:

ea

—————— s5in%g,
r+iacosh

d=-jecosb+
(1.8)
= - [(#* + a®) sin?6 + €% cos?f] + 2mai cosH (3 — cos?h)

ma sin®é + i e* cosh

-2a - sin?f,
r+iacosf

According to Ref. 1 magnetization of the Kerr—
Newman metric will be achieved if we replace f and w
by ' and w’, where

7= a1, (1.9)

Vw'=|A|2Vw +pf T (A*VA - AVA*), (1.10)
It is a simple matter to evaluate the complex field

A=1+By® - iB}¢&, (1.11)

but the determination of w’ entails considerable labor.
Finally, to obtain the orthonormal components of the
electromagnetic field, one must replace ¢ in Eq. (1.4)
by

&' =A1D - 3BE). (1.12)

2. EXACT SOLUTIONS (Q =2 B,J)

If one restricts attention to a vacuum metric such as
the uncharged Kerr metric, Eq. (1.10) can be replaced
by the simpler equation

dw’ - w)= %B%[(pdx— (7t + @)dw], 2.1)
where X is a new potential such that

- ipF2v(f2 + @?) =y, (2.2)
and, of course,

-ipfiVe=Vw. (2.3)

The existence of the potential ¥ is guaranteed by the
vacuum field equations.*
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In the case of the Kerr metric we have evaluated x
and have succeeded in integrating Eq. (2.1). The result
is expressible in the form

w'= (& - fA)/ (P +ad?), (2.4)
where
a =a(l - B m*d%),
4 (2.5)
B= % + % (— 8mr acosd(3 - cos?h) — 6y asin?d

2m a® sin®6

1 [#(2 + a®) + 2m a?]

4m?a® cos?h

n [(#2+ a®) (3 - cos?9)? - 4a? sin29]> ]

Since the field A is well-behaved as A —~0, the non-
singular nature of the event horizon can be established
by finding a new coordinate system such that

d1’2 2 A 2 ’
Y +do° - " dT* and d¢ - w'dT
are both replaced by expressions which are well-be-

haved as A —0. Such a coordinate system is provided
by (v, 8, ¢’,u), where

2
dT =du - rta

o
— r_ =
A A and do=d¢ A dv, (2.6)
for
% +d6? — % dT? =AY a® sin?0 d»r? + A d6?
+ 207 +a¥) du dyv - A du?l, 2.7
dp—w dT=d¢’ — w' du- Bdr. (2.8)

Finally, the orthonormal components of the electro-
magnetic field for the locally nonrotating observer are
given by

o&

H,+iE,=- B AP 30

=By A2 A2 [(72 + at) cos@ + mai sin?6

% (3 _ _4aicos®
v +iacosb

a® sin%o

T r+ia 0059)2>] ’

(2.9)
Hy+iEg=3B, A2 PAl/? %;:c

ma? sinf

- matarig [ ] s
ByA A ¥ G +ia cost) sinf,

These somewhat awkward expressions can be simplified
by transforming to an alternative frame of reference
moving along the ¢ direction at velocity v relative to
the locally nonrotating observer’s frame, where

v/c=AY2gsing/ (2 + ab). (2.10)
In the new reference frame
H+(E}
=A1Y2[(2 + @®)(H, +iE,) - iaY 2 asinb (H, + iE,)]
. . 29 . s 29
— B A < 6 ia sin ima sin
0 cosbt S acose (r+iacosd)?) ’
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H}y+iE}
=AYV (2 + a?)(H,+iE,) +ial 2 asind (H, +iE,)]

sind

=-BAPAVE ————,
7 +ia cosf

(2.11)

3. COMPARISON WITH WALD’S SOLUTION
On the symmetry axis the electric field is given by
6.1

In the linearized theory the corresponding electric field
would vanish. This suggests that our exact solution of
the Einstein—Maxwell field equations should be identi-
fied not with Wald’s @ =0 solution, but rather with his

@ =2B,J solution, the natural end product of the process
of charge accretion.

E!=2Bjma/(1+ Bim*a®).

Further evidence that this is the proper identification
is provided by evaluating the integral®

[ «F=41Q (3.2)

over a 2-sphere (v =const, {=const). To the first order
in B, one gets precisely @ =2B;J.

A detailed comparison of the electromagnetic fields
shows that when all terms beyond the first order in B
are deleted our solution indeed reduces to Wald’s ap-
proximate solution with @ =2B,J. It should be noted,
however, that even for small values of B, Wald’s solu-
tion must break down as v —, since the linearized
solution is asymptotically flat, while the exact solution
resembles Melvin’s magnetic universe asymptotically.

4. ELECTROMAGNETIC FIELDS (Q # 2B,J)

With a little more effort one can evaluate the exac!
electromagnetic fields for the solution which results
from the application of the magnetizing technique to an
arbitrarily charged Kerr—Newman black hole,

In the alternative frame of reference the electromag-
netic fields are given by the expressions

. } ie
B+ iEL = A [<1+%Boz€)ms—e)f
. ia sin?8
+Bo(1+EBo‘I’) cosf + 7 +iacosé

ima sin?0 — ¢? cosh
(r +ia cosh)? ’
sinf 4.1

' L iEl— - B, A?al/2 1 iy —
Hot1Bs 0 (1+2B2) ¥ +iacosh ’

where the complex potentials are given in Egs. (1.8)
and A is defined in Eq. (1.11),

5. APPROXIMATE DETERMINATION OF ' (Q # 2 B,J)

Obtaining the metric in this case is extremely
tedious, for while f’ is easily evaluated using Eq. (1.9),
the determination of w’ from Eq. (1.10) tries one’s
patience. Not having access to electronic symbol manip-
ulation, we have not attempted to derive w’ exactly.
Nevertheless, we found that it is not difficult to derive
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the approximate expression for w’, from which it is
possible to show that to the first order in B, the event
horizon remains nonsingular.

In the linearized theory we may replace A by 1+ B;®.
Then Eq. (1.10) reduces to the simple equation

(5.1)

In the case of the Kerr—Newman metric this equation
is easily integrated, and we find that w’ again has the
form given in Eq. (2.4), where this time

a=a-2Byer, B=(a/A)( + 2B erasin’).

V(w' — w) =2By[(Re®)Vw +ipf 1V (Imd)].

(5.2)

Because « is independent of 8, it is again possible to
introduce new coordinates (7, 8, ¢’, %) in terms of which
the nonsingular nature of the event horizon can be
displayed.

While astrophysicists may be disappointed that our
solutions are not asymptotically flat, general theorems®
seem to indicate that it will be necessary to consider
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nonstationary fields if an asymptotically flat solution is
to be constructed representing a black hole in an exter-
nal magnetic field.
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The reduction of the principal and supplementary series of representations of SL(2, C) in the SU(1,1) basis
is carried out by using a basis function which formally resembles the coupled state of two angular
momenta. The spectrum of the SU(1,1) representations contained in SL(2, C) and the transformation
coefficients are obtained by expanding the SU(2) in terms of the SU(1,1) bases with the help of the
Sommerfeld-Watson transformation. The orthogonality conditions for the principal and supplementary
series are discussed. For the principal series this follows easily from the standard Sturm-Liouville theory
of the second order differential equations. For the supplementary series the orthogonality condition is
obtained from the fourth order differential equation satisfied by the Fourier transform of the basis function.

1. INTRODUCTION

The unitary infinite~-dimensional representations of
the Lorentz group [or SL(2, C)] were discovered in the
forties [Gelfand and Naimark (1946, 1947), Harish-
Chandra (1947)]! and laid the foundation for the study
of noncompact groups. These representations have
been used extensively in the context of the local field
theory for “infinite multiplets” [Feldman and Matthews
(1966, 1967), Fronsdal (1967)],% in connection with the
saturation of current algebras with infinite sets of par~
ticle states [Fubini (1967), de Alfaro (1967)],% and in
the harmonic analysis of the forward elastic scattering
amplitude [Hdjioannou (1966), Boyce (1967), Delbourgo
et al. (1967), Toller, (1968)].*

Invariance under the Poincare group P =SL(2, C)
XT,, where T, is the group of space—time translations,
is an essential prerequisite for all such investigations.
For the analysis of scattering amplitude, the procedure
which uses only the invariance and unitarity properties
is equivalent to the usual partial wave expansion and is
commonly called the “crossed partial wave analysis, ”
The group which occurs most naturally in such analysis
is the SU(1, 1) subgroup of SL(2,C). In recent years
various kinds of partial wave expansions of the relativis-
tic scattering amplitude have been proposed. The pur-
pose of these expansions is to separate out the kine-
matical part of the amplitude in the form of basis func-
tions of irreducible representations (IR) of /2 and then
make various assumptions (like analyticity) which can
be tested against experiment about the dynamical part.
The functions occurring in the expansion are the bases
of IR’s of the little group of 2, which is O(8) or O(2, 1)
according as the eigenvalues of the Casimir operator
p? of P are positive or negative. The O(2,1) expansion
is related to the analytic continuation of the O(3) ex-
pansion in the crossed channel at values of the param-
eters pertaining to the physical region of the direct
channel. This is found to be identical with the Regge
continuation of the amplitude by means of the Somer-
feld—Watson (SW) transformation. The principal series
of the O(2, 1) expansion is related to the background
integral of the SW transform and the discrete series
to the “nonsense channel” terms.

In view of possible applications to particle physics,
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such as those mentioned above, it is of interest to
study the IR’s of SL(2, C) reduced with respect to the
SU(1,1) subgroup. Mathematically, the problem is
much harder than that treated in an earlier paper (I)
[Basu and Majumdar (1973))° in which the SL(2, C) rep-
resentations are reduced with respect to the compact
SU(2) subgroup. The problem has been treated at length
by Mukunda (M) [Mukunda (1968)]° and by Sciarrino

and Toller (ST) [Seiarrino and Toller (1967) )" amongst
others [Striim (1967)]8 and some important results

have been established. These results are, to a large
extent, complementary to one another. While M obtains
the reduction of the principal series for integral j,

[see Eq. (2.5)] and also of the supplementary series,
ST do this for the principal series only but for both
integral and half-integral j,. On the other hand, while
ST determine the coefficients of transformation from
the SU(2) to the SU(1, 1) basis in one particular case

but do not derive the spectrum of the discrete j'-values
in the decomposition of the principal series, M derives
the spectrum by using the completeness relations for the
basis functions but does not determine the transforma-
tion coefficients. In the case of the supplementary
series, no basis functions are defined, and the nature
of the spectrum is determined by expanding the kernel
appearing in Naimark’s definition [Naimark (1964)]?

of the scalar product in a function space with a nonlocal
metric.

In the present paper we make a fresh attack on the
problem along entirely different lines and not only de-
rive all the results enumerated above in a simple and
unitary way but also go, to some extent, beyond the
work of our predecessors. For instance, while the
principal series alone is considered by ST, we have
succeeded in finding the transformation from the
SU(2) to the SU(1, 1) basis for both the principal and
the supplementary series. The success is attributable
to the choice of the basis functions which are taken to
be formally identical with the coupled states of two
angular momenta j; and j,. As shown by one of the
authors [Majumdar (1958)]'° a long time ago, the
coupled state ¢, can be written in a compact form in
terms of the Gauss hypergeometric function (HGF) with
J1,J2,J, m contained in it as parameters. This function
or, more properly, its analytic continuation in ji,j,,7,
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has been used already to study the IR’s of SU(3) [Basu
and Majumdar (1970, 1973)}!! and SL(2, C) reduced with
respect to the SU(2) subgroup and has led to consider-
able simplification of the mathematical treatment. En-
couraged by these successes we now use the same
function for solving the problem of reduction of SL(2, C)
in SU(1,1) basis and the Clebsch—Gordan problem for
the group SU(1, 1). Because of its usefulness in a var-
iety of problems in the representation theory of the
simplest Lie groups it can be legitimately called “The
Master Analytic Function.”

We conclude this section by outlining the procedure
adopted for carrying out the reduction. It will be seen
from Egs. (2.10) and (2. 11) that the basis states
Y@ gt of the SU(2) and SU(L, 1) subgroups have
nearly the same form and are functions of the same
variable x =zz. For obtaining the reduction we can
therefore expand ¢55% in a series of the functions
P5uh D This is easily done by breaking up ¥55* into
a power series and expanding each power of x in a
series of HGF’s of the appropriate type by means of
the Burchnall—Chaundy formula. The series thus ob-
tained yields the continuous and discrete spectra of
the SU(1,1) representations after the SW transtorma-
tion, Since, according to the present viewpoint, the
two apparently unconnected problems mentioned in the
last paragraph are seen to possess similar mathemati-
cal features, the same technique is applied to the CG
problem discussed in Paper II. In order that the expan-
sion coefficients found after the SW transformation
may be the coefficients of a unitary transformation it
is essential for the basis functions to fulfil the require-
ment of orthonormality. In the case of the principal
series of representations of SL(2, C) it can be easily
shown, with the usual definition of the scalar product,
that the functions (2. 11) do not form an orthogonal set,
However, an orthogonal set is easily obtained by taking
the linear combination (2. 13) of ¢, and ¥_;.4,. The
proof of the orthogonality follows easily from the stand-
ard Strum— Liouville theory and is given in Sec. 5. In
the case of the supplementary series the scalar product
is defined in a function space with a nonlocal metric,
and the proof of the orthogonality becomes much more
difficult. The difficulty is resolved by adopting Nai-
mark’s alternative definition of the scalar product in
the Fourier space. The differential equation satisfied
by the Fourier transforms of the basis functions is
easily set up and the orthogonality of the eigenfunctions
of the resulting fourth order equation is established
after elaborate calculations. From the form of the
orthogonality condition the normalization factor of the
basis function follows immediately. In the case of the
CG coefficients of SU(1, 1) the normalization factor is
determined in an elementary way by comparing the
coefficients of the direct and the inverse transformation.

2. CONSTRUCTION OF THE BASIS FUNCTIONS

The elements of the group SL(2,C) are complex 2X2
matrices of the form

a-= (“11 “12> with det a =1, 2.1)

Ay Gy
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The generators J; = 30,, F,=(i/2)o, (i=1,2,3) of this
group satisfy the commutation relations

(3, Il = i€ pT s (73, Fj] =1€; by,

(FF;] == i€ ). (2.2)

In the space of functions of four variables &, &, 1y,

1, where (£, &), (n1,m;) are spinors transforming ac-
cording to the fundamental representation and the com-
plex conjugate representation, respectively, the gen-
erators can be written as first order differential opera-
tors of the form (2.3), (2.4) of I. Since all the irreduc-
ible representations of SL(2, C) including the infinite-
dimensional ones can be generated by considering only
homogeneous functions f (&, & ;ny, ny) of degree 2j,

in (&4, &) and of degree 2j, in (1, ny) the differential
operators can be written in terms of two variables

z,z in the form

. 0 = 0 .
Fy=iz 52 T8 52 -i(oc-1),

. a 79 0 S .
F,=i 3y~ 5z +iz2(0—j,~ 1),

) 2
F =42 — +i—Z +iz(o+j,— 1),

oz 0z
J3=—z%+£~a%+jo, (2.3)
L= e = B 420 o= 1),
J.=2° Biz +§—2~ —z(0+j,— 1)
where

Jo=dyzidy, F,=F(+iF,, z=£/%, z2=1/1.

Substitution of these into the eigenvalue equations of
the Casimir operators

(~JJ; +FFi+02+ 74 -1)=0,

(2. 4)
(Fid; +2ij,0)f=0
gives
O=ji+i+1, ji—Fa=j, {2.5)

The values of 0 and j, are restricted by the condition
of unitarity of the representations. For the principal
series of representations j, is an integer or a half-
integer and 0 is purely imaginary and for the supple-
mentary series j,=0 and ¢ is a real number in the
interval 0< o<1,

The subgroup SU(2) of SL(2, C) is made up of all
unimodular unitary matrices of the form

o
(5

In the space of the monomials £.%°%,” (with a+b=2j
=const) its generators J; = 20, can be represented as
differential operators of the form

B
a*) with| o |2 +| 8|2 =1. (2.6)

R P A N P
J3—‘ 2 (gi agI 52 agQ) ’ J-_EZ agly J+’£1 852 (2- 7)
D.Basu and S.D. Majumdar 186



Finally, the noncompact subgroup SU(1, 1) consists of
all elements of SL(2, C) of the form

(a B) with |a|%-|B]2=1. (2.8)

B* a*
Its generators F,, F,, J; can be represented as differ-
ential operators of the form (Barut and Fronsdal 1965)'2

0 , ., 0
F+:F1+Z‘F2:Z'E1‘5'£—2, F_:Fl-ze:zgz—a-&—l (2.9

with J; given by (2. 7).

Operating on & £ with these and using the hermiticity
condition, one obtains the following four types of UIR’s
of SU(1, 1) [Bargmann (1947)]'*:

(a) The continuous nonexceptional (principal) series of
representations

j=—34i), —o<A<w, m;=0, +3, =1, -

(b) The exceptional (supplementary) series of
representations

1 1
_§<S<§’

j:—%+sy
m=0, £1, £2, -+,

{c) The positive discrete class: j=a negative integer
or half integer m=~j, —j+1,++-,

(d) The negative discrete class j=a negative integer
or half integer m=7j, j=1,+°-.

A comparison of Eq. {2.3) of I with Eq. (2.7) shows
that the generators of the SU(2) subgroup of SL(2, C) are
formally identical to those for the coupling of a pair of
angular momenta j;, j,. The coupled states!’

gy =270y,

where

(2.10)

U =(1+22)7 7 F(=j=m, jo—7;~2j;1+22)

can, therefore, be taken to form the bases of UIR of
SL(2, C) reduced explicitly with respect to the SU(2)
subgroup. The operators Fy, F,, J; of the subgroup
SU(1, 1) are likewise formally identical to those for the
coupling of two representations I’! and D’2 of SU(1, 1).
The basic states of UIR of SL{2, C) appropriate to the
reduction of SU(1, 1) can therefore be written as

gomj' :Nj'mzjo-m(l - Z‘E)U-jl‘lF(_j, - m;j(‘) —j, 3

-2j";1-22) (2.11)

where

N» :(F(m_],) >1/2

However, since the values of j;, j, as given by Eq. (2.5)
do not occur in the representations of SU(2) or SU(1, 1),
the above construction of the basic states must be re-
garded as purely formal. Nevertheless they prove to be
very helpful in studying the irreducible representations
of SL(2, C).

The basis functions (2. 11) are solutions of the
equation

[F2+ FE~ g2 +5'(G" + Deni’ = 0. (2.12)
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The functions (2, 10) have been already used in I for
finding the j-values of SU(2) representations contained
in SL(2, C) and for determining the matrix elements of
the generators and of finite transformations. Before
using (2. 11) for a similar purpose we must see that they
fulfil the requirements of completeness and orthonormal-
ity. Although from the development of Sec. 3 it is evi-
dent that the functions form a complete set, a simple
test shows that they are not orthogonal and hence are
unsuitable for use as basis functions. However, as has
been shown in Sec. 5, an orthonormal set can be easily
constructed by taking instead of one solution, a linear
combination of the first and second sclutions of the hy-
pergeometric equation to which Eq. (2.12) can be re-
duced. The appropriate linear combination turns out to
be

g0 Llm=jy+ )02 +1)

- Omj?ul
Um TTm+j A D00 = jg + -9

XF(=j =m,jo=j";=2";1-x)

L Ll —jy +1)0(= 2’ - 1)
L(m-j)T(=j" - jy)

XFG +1=m, j,+5 +1;2)"+2;1-x)

(1 - x)uﬂ"

=201 = 2 (= § 4, = o= 33 m = o + 15%)

for m—j;= 0 (2.13)
and
. .t
NN (GESTES v i WA
™ OLG H1-mP(jti 4 1)
XF(=j" = m;jo=j's=2i";1=x)
[(jo—-m+1)(-2j'-1) "
+ — —— 1-x)°9
(-7 -m)T(,—7) ( )
XFG +1=m,jo+j +1;2)"+2;1-x)
=(1=x)" (= —m, jy= 35 1 +jy=m; %) (2.14)

for m —37,<0.

The hypergeometric functions in Eqs. (2.13) and (2. 14)
converge within the unit circle x=zz=1. In the region
outside the unit circle one must uge a different pair of

solutions of Eq. (2.12), namely

U =2 (1= x)" A (= 5+ m, = 3 gt 15 1/%)

for j,+m> 0, (2. 15)
V=21 = %) R (= = m, = Gy =7 1= dg=m; 1/x).
(2.16)

By the standard formulas for the analytic continuation
of the hypergeometric function [Erdélyi (1953)* these
can be similarly written as linear combinations of two
hypergeometric functions of the form F(a, b;c; 1= 1/x).

3. REDUCTION OF THE PRINCIPAL SERIES OF
REPRESENTATIONS OF 0(3,1)

For the determination of the complete spectrum of
j-values appearing in the reduction by the technique of
the following sections a knowledge of the discrete part
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seems to be necessary. This can be easily had by ap-
plying the operator F, to the function (2.11) and using
the hermiticity condition:

Fyf,2" ::21[(7;1 ~iNm +i0] ey o+ Egj"*fmj‘-1
11
_jl$01°1) W = 2ilm =5 = Dm+j + D]
x(o-j —1)H S (8.1)
i+l
where
. . jof = 5"
]'_‘ ]’ .': -
fn =ae,, m {3.2)
The condition
(Fyfd ™, £ = (™, Fofd") 3.3
then gives
2 7 2(: 2 12
aj._l l] +0| (70 =J )
_ ol 3.
Aje 47 2(47 2-1) -4

For this to be positive j° must have the set of values
~jo =Jg+1,e+e =3 or 0.

Since ]", j' +1, j'=1 cannot be simultaneously of the
form — % + s the above method obviously fails in the
continuous case. To determine the continuous part of
the spectrum of 4 values, we expand the function ¥,
of the SU(2) basis in powers of x=2zz and use the
Burchnall—Chaundy formula [Erdélyi (1953)]*°

-%, ctn=-1, —=n

o (a), (D), n
Hr Al s i I -x)
XFa+n,b+n;, c+2n; 1=x), (3. 5)

For x <1, m=2j, a=m+1-o,
the process yields

b=1=j,~0, c=2(1-0)

527 explin(m - jo)|
¥ F(l+m-~o)l(1-j,—o0), Z'(

l"(m+1 o+n)l (- ]0+1—-0+n)[‘(1-20+n)
r'(2(1 - o+n) - n!

X S7

Tmig(1=X)"F(l~o+n—m,j,+1-0+n;
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21-0+n); 1-x) (3.6)

-n, 1=20+n, —o=-t+j+1

ot .1
e 1+m-o0, 1~j,— V2

’

a==j+m, B=-j,-j, (3.7)

The expansion (3. 6) of the SU(2) basis function has the
desired analytic form but contains inadmissible values
of . To circumvent this difficulty we express the sum
(3.6) as a contour integral in the complex j' plane and
apply the Sommerfeld—~Watson transformation. The
various terms in the sum are easily recognized as the
residues at 5 =o0—n-1 of the analytic function

FIP(A+j§ = T~ 0-j)

y=-2j.

() =K =T o=

r-2"-1) Sf’"fﬂ "

(3.8)
where

Iy -0, 145 -0, ~0=t+j+1

SJ' Z ) (B AL\t zt .1
Jmio T af2 1+m—-0, 1=j;~ 2o
(3.9
Ay = %) (= =, jy-5s — 2§75 1= 2). (3.10)

Simo and a,’” are entire functions of j* and x(j") 1s a
meromorphic function going to zero rapidly as |5
tends to infinity in the region Rej’ <0 (see Appendix).
The singularities of x(j') arise from the I'-functions in

the factor

(= jy=j ) (= o)1+ =0

C(=2=-1)

T(im~j

and, as shown in Fig. 1, are located at the points

j'=0—k=1, ~o+k, —jy+*k, m+k (b=0,1,2...).

The singularities at —o+k, m +k for k> 0 and at —j, +4%
for k>4, lie in the region Rej’ > 0. The remaining sin-
gularities which are all simple poles lie in the region of
interest Rej’ < 0. Because of the occurrence of

(- 2j'=1) in the denominator no singularities occur at
the points j'=0, —3. Let us now choose a contour C
consisting of the infinite semicircle S on the left and the
line Rej’ =~ £. The singularities enclosed by the con-
tour are the simple poles atj’'=o—-k-1(,=0,1,2,.-.)

and at j'=—j,+1 (I=0,1,2,-++j,—3 or j)). Therefore,
by Cauchy’s theorem,
1 S .
'é'—f X(7’) d], :ZIReS[XU,)]j'=O-k-1
m Je b
(3.11)

+ ERGS[XU’)]j':.jO-U
1

Since the first term on the rhs equals ¥, by our previous
analysis and since the integral on the lhs vanishes on S
according to the analysis given in Appendix, the equation
can be written as

1 -1 /2+i

Im=5

! ! -
2mi ) somie XG4 -Zt,Res[xU )],-.=_,-0+,.

(3.12)

Folding the integral about the real axis and evaluating
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the residues of the last term in Eq. (38.12), we have

27t explin(m = jy) 1

W":r(m +1-0T(1=-jy—0 T(m—-7,+1)

T (=jg+i' +1)

X _1__/“1/2*“n C(m =) (m+j" + 10 (=jg~-
21 )1 2 r-2"-1)

(L(=i' =T+’ -9
L2 +1)

jmj gum d]

277 explin(i - jo)] (1 1

i_ —_
Z‘b’"_l"(—m +1-0)T(1-j,- o)\27i I'{1—j,-

(- O'—j,)r(— U+j,+ 1) (- )o-j'-lsl'

x -
rej’ +1) Jem do

XS s
and for the case (iii) the discrete spectrum, as before,
terminates at j' =—-m.

The above formulas show that in addition to the conti-
nuous nonexceptional series of SU(1, 1), in the first two
cases (i) and (ii) the reduction yields only the positive
discrete series while in the cases (iii) and (iv) we have
only the negative discrete series.

4. REDUCTION OF THE SUPPLEMENTARY SERIES

For the supplementary series j,=0 and o is a real
number lying in the interval 0 < o< 1. Since j,=0 the
spectrum of the SU(1, 1) representations do not contain
any discrete part. Using the technique of the previous

- sections, we now have for x <1

Zu-j-l (:F) m

Vn= 1+ iml=9r'(1-o0) Z’ (=)
F(Iml+1 —o+n)f(l-oc+n)I{1- 2°+n)st'
[(~-1+2(1-o+n)n! im0
XA=x)'"F(-m+l-0+n,1-0+n; 20 =0+n); 1-x)
(4.1)
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j*==lor.3/2

20 Tm=-j)Tm=j,+ (=03

+ 2 2
jo=dor-3/2 TG +j,+1)
L= o+ <)y ., .,
=T 5= 1) Simio@n | . (3.13)

The absence of the identity representation in the decom-
position is in agreement with the observation made by
Fulling [ Fulling (1974)]'® in a more general context.

In the second case x =2Z <1, m <j, a similar calcu-
lation shows that the discrete spectrum does not extend
beyond — m if jo,>m >0 and does not appear at all if
m <0,

In deriving Eq. (3.13) we have used two different
Kummer forms of the HGF occurring in #%,. This was
necessary to reproduce the correct j’-values for the
discrete part of the spectrum which is determined un-
ambiguously by the unitarity condition (3.4). In fact, we
need all the four Kummer forms of the HGF for obtain-
ing the expansions and the spectrum of the j’-values in
the four cases

() x<1, m=4, (ii) x <1, m<j,

(iii) x> 1, jo+m=0 (iv) x>1, j,+m<0.

I In case (iv) the expansion takes the form

f-l f24i =
X dj
m) -1/2

Vi, (=)o

(L(=m—j)0(=m+j' +1)F(—Jo+J + 1) (=jo=5")
[(=2j =1

i") C(=m~j G +1= 0 (=0-j")
C(=2j"=-Dr@G +j,+1

(3.14) ' where positive or negative sign is to be taken according

as m = 0. The series on the rhs can be regarded as the
sum of the residues at i’ =c=-n=1(n=0,1,2,+-) of the
analytic function x(j') of Sec. 3 [Eq. (3.8)] with j,= 0.
Besides these, the function, as shown in Fig. 2, pos-
sesses singularities at the points j'=—-o0+%, i =m+4,
i'=k(k=0,1,2,...). If 0< 0<% the only singularities
that lie on the semiinfinite plane Rej’ < -3 and are en-
closed by the contour C of Sec. 3 are the simple poles
atj’=o-n-1®=0,1,2,...), Since the integral on the
semicircular part of C again vanishes, we have

zﬂ-j-l(_)m _1
Tl=-o'(m+1-0)T(m +1) 27
><f—“z*i‘“r(m (= Tm +"+1)rG +1)

-1/2 r(2j"+1)

rG' +1-o0(~o-j"
r-2-1)

vi=

uZn' Sj::nﬂ dj'
for m= 0. 4.2)

If, on the other hand, 3 < o<1, then the pole at ;'
=—1+o0 nearest to the imaginary axis occurs between
the points 0 and - ; and so lies outside C. For this range
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of g, however, one pole of I'(~ 6—3'), namely, the one
on the extreme left at ' = - o lies inside C. The ex-
pansion of ], therefore, now contains two extra terms
besides the integral on the line Rej’ = - %. Because of
the relation (2. 13) between the solutions of the hyper-
geometric equation the two terms combine to give

[, ];»-o and we have

i oveidy mf Llm+o)(o)
b =2 (I'(m+1)1“(20—1)

+ 1 1
Tm+1-0T(1- 0L (m+1) 2mi

-
Sj mum

Xf—l/Z*i“[‘(nl_j')r(ﬂZ 4+ + DI (=)0 +1)
s 27 +1)
= é;)’i(i’)ﬂ— 2 sha) 9
for m=0
where
Z tzt

t

The extra term on the rhs corresponds to a represen-~
tation D, of the exceptional series of SU(1,1). Thus
IR belonging to the supplementary series of O(3, 1) de-
composes into IR’s of the continuous nonexceptional se-
ries only of O(2, 1) if O< ¢ <3 and into IR’s of the non-
exceptional series and one member of the supplementary
series of O(2,1) if $ <o <1. The same conclusions are
drawn by Mukunda [Mukunda (1968)] from entirely dif-
ferent considerations. The other cases, namely x <1,
m<0;x>1, m=Z0, can be investigated in an analogous
manner and as they give similar results these need not
be discussed separately.

5. ORTHOGONALITY OF THE BASIS FUNCTIONS
AND THE TRANSFORMATION COEFFICIENTS

In the case of the principal series of the SL(2, C) re-
presentations the scalar product is defined in the tradi-
tional way and the orthogonality of the basis functions of
the SU(1, 1) representations appearing in the reduction
can be established easily from the standard Sturm-—
Liouville theory of second order differential equations.
Since for the discrete class the HGF terminates and the
orthogonality becomes trivial we shall consider here
only the continuous nonexceptional class of SU(1, 1) re-
presentations corresponding to j'=-%+is. The differ-
ential equation satisfied by the real function,

O = (=) (= = m, =5 jyg=m+ 15 %)

for j,—m=0, is

d o
2 fdo-ma e d — (o= - i )xd 0
yr: (xJ (1=x)%— yr <pm> (o= m + 1= mjx’ 0"l

=-(G+

If ¢!,, I'=~3 +it, is another function satisfying the
same equation, then we have

1. G, 1
Jp=m = lim—Lt (1-x)t¢-"
j; x0T @il @t dx =1im L ((s - [\1 x)

x=~1

o (5.1)
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- (1 - x)-l(t-s)] +i(s]:}- i) [(1 _ x)!(hS) -(1- x)-((t+s]>
(5.2)

where

(CGy=m+ 1T + 1) (=21 =1)
Lo+ + VLG +1=m)Gy= (=1 =m)"

We now set (1 - x) =exp(-7)
lim, .. and note that

G;”’l'=

(5.3

so that lim,.; implies

EZ'sL-T) [(1=x)¢-9 (1 - x)-¢-9]=1im ’ exp(iu(t — s)) du
=276(t - s).

Since o is purely imaginary for the principal series of
SL(2, C), this gives

[ vloh * 0 gy = G760 - 5) = 6t +5)]. (5. 4)

Similar orthogonality conditions hold for the functions
uly, U3, Vi, defined by the Egs. (2.13), (2.15), (2.16)
with the weight factors x™0 and x*¢ 0”"’ respectively.

For the supplementary series of representations the
Hilbert space is different and the above scalar product
does not define a unitary representation of SL(2, C).
Construction of the Hilbert space for this particular
class of representations involves a nonlocal metric ap-
pearing in the definition (Naimark 1964)

(fl,fz):fffl(zx)f?(zz)K(Zn z,) dz, dz, (5.5)

where
2, =%, +iy,, dz,=dx,dy, (k=1,2).

To avoid the complexity of nonlocality we formulate
the orthogonality condition in terms of the Fourier
transform of the basis function defined by

u,.m(z,2)=5—1ﬂ ffexp[i(ux+vy)]<p(u, v) dudv (5.6)

where

z=x+iy=rexp(if), z=7exp(-16),

22)° (= +m, -5y m+1; 22).
(5.7

Ujrm(2,2) =2707(1 =

The generators Fy, F~‘a, :Ta of the SU(1, 1) subgroup in the
Fourier space can be constructed in the usual way and
these are given by

Since the algebraic structure of 33 is the same as that
of J,, the Fourier transform ¢(u, v) must be of the form

(u, v) = exp(~ imy)g;. (o) (5.9)

where
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u=pcosy, v=psiny,

i) = [0t Tulor)r™ (1 = #2)-9"

XF(=j"+m, ~j's m+1; ¥ dr. (5.10)

For the sake of algebraic simplicity we shall treat here
the special case m =0; the general case for arbitrary m
can be treated essentially in the same way. The differ-
ential equation satisfied by g;.(0) =g;.¢(p) can now be set
up from the basic equation

[F2+Fi= B2 +5°G" +1)]g; (o) =0

and elaborate calculations using (5. 8) lead to a differ-
ential equation of the fourth order. To make the equa-
tion self adjoint we multiply it by the weight factor pt*%
and the resulting equation is given by

d? 3 zadzgj' d 5548, 85
+ + 2_ +20
W P dp® dp dp

=~ 45"+ 1)p"%g;.(p).

+[p? +4(1 + 20) p"®g;.(p)
(5.11)

If g;» and g;, be two solutions of the above equation be-
longing to the eigenvalues j'=~% + is and I'= — § +t,
respectively, the Eq. (5.11) then leads to

f g+ (P)g . (p)p" ¥ dp
0

(3 + zo.)p2+20

iy el e

< - g;(g +g0)]
p

p3+20
- m{[gz"(g;' +gl) - gl lel +2)]

[g,:(gj:‘*'g,”' gj'(gz'+g1”, ]} (5.12)
To evaluate the rhs of Eq. (5.12) a knowledge of the do-
minant term of the integral

g0)= [ Tyl (1 = A=, =55 15 ) ar

(5.13)

for arbitrarily large values of p is necessary. This can
be obtained by noting Eq. (2.13), the standard formula
[Ryzhik and Gradshtein (1951)], "7

S A= AT o) dr =2 T(p + Dp~* 0, .1 (0)  (5.14)

and the asymptotic form of the Bessel functions [Erdélyi
(1953)].*°

To evaluate the derivatives appearing on the rhs of
Eq. (5.12) we substitute, as before, Eq. (2.13) in
(5.13) and assume the validity of the standard rules of
differentiation under the integral sign. We write down
here the final results which follow after differentiating
the resulting equation and using the well-known recur-
rence relations

(&) = =2 (270 (2)],
z2d, 4 =V, (2) + z2d,(z)

in conjunction with the formula (5. 14) and the asympto-
tic form of the Bessel functions
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2 1/2 . .Y
R R

T W*T
x _—
cos< 1”3 >],

” 2 1/2 _qﬁ T uT
) o8

+A%p"" sin <p I iz—-)]

2 1/2 Toum

Y + Lpmort I =2z
&ir T i (TTP) [(1 20-2j")A Sln(P i 2)
wrT
)]

, 2 1/2 .
g,-,+g,"/=(n—p> (1+20-21")A,.p=%" cos<p_I “”)

[\-]

+(3+2j" +20)A%p~ " '25111( I

472
+(3+2) +200A%p" 2 cos ( #Z*H)]
(5.15)
where
4= 2o-j'ilrr(;(s'2{: :)]12)1“(0—1"), (5. 16)
p=o-j".

It is now easy to verify that the first term on the rhs of
Eq. (5.12) goes to zero as 1/p and on setting p=¢* the
second term leads to

1G] explin(s = )] - exp[- iMs - 8]
Lt [oosnts 405 iG5-0 )
7 fexplir(s +1) |- exp[— ix(s +1)]
+cosh(s—t)§< HEET)) )]

where

o= AjuAfe. (5.17)

We therefore have the following orthogonality condition
in the Fourier space:

Jo= g5 (p)g.(0)p " dp

:Z‘G‘?.,. coshws[86(s =) +8(s +1)]. (5.18)

For arbitrary m the normalizor Gj7;, can be obtained in

a similar manner and its value is given by
22T (im ) + DD + DI (0= 5)

LG +1)rG +1+lm 0= 1"+Iml)

G =

x[(=2"= ) (o+1"+1).
(5.19)
Using these orthogonality conditions for the principal
and supplementary series it is now a straightforward
matter to obtain the transformation coefficients from
the SU(2) to SU(1, 1) basis. For example, for the prin-
cipal series, we obtain from Eq. (3.13)

(R, o) = ()02 D (m = 5y +1)

T(~0—-j)T(~0o+j "+ V7 .
XF(m+1_o)r(_]'0+1_0)Sj’m0- (5.20)
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For the supplementary series we have similarly
(L@ e

PSR T - i

=2 cos |(2j' + 1)2

T(m+ 1 (o~j)0(c+j + DI(~0=3)
ri-o

L= o+ + 1 ()"

I Sine

(5.21)

APPENDIX

In what follows we shall investigate the asymptotic be-
haviour of the function
X =yl =0 = V(= o= (=j =LA +j = 0)
Kim = T{~ 2]7 -1

X~ x)" (=" =, o= = 255 1= 008

imig
(A1)

on the infinite semicircle S (see Figs. 1 and 2) in the
complex j '-plane. The behaviour of the HGF can be
estimated by recalling Watson’s formula [Erdélyi
(1953) '

F(=j'=m,jo=3'"s = 2j"; 1= %)

2-2m+1 . + m+j m+j?

r(-2j )r(2 (1+x) (1 L2x > (A2)

V=7 Tls=jI0(=jo=3" 1+x
The function S},;, which is a finite sum of 4F, ()
functions,

pom ' +l-0,—j'~0,—0=t+j+1
T ¢ 1

Simio= Z‘ Zan mtleo,1-0-jg -

(a3)

is an entire function of j' and its limiting value on S can

be obtained by using the contour integral representation
a, b, c

3Fe 2

e, f

exp(- ime)T(c)
“4r(e)T (e - ¢) sinwc sinn(e - ¢)

stc'l(l —5)2<YF(a, b; f; sz)ds
3

(A%)
where p stands for the Pochhammer contour. We now
set

c=1+j'-0, e=m+1-g,

(A5)

a=-g=t+j+1, b=-j' =g,
f==jytl=0, foa=t=j=jy==7
where 7 is a positive integer and note that by a Kummer
transformation the HGF appearing on the rhs of Eq.
(A4) can be transformed into F(~7, ~j,+j' +1; f; s2)
which for large [7’[ is given by

F(=7,=jo+i +1; f; s2)
~ . (ﬂ . r.r
= exp(~ i17) e ((1 i =jae)s". (A6)
When this is substituted in Eq. (A4) the resulting inte-

gral then becomes identical with the Pochahammer con-
tour integral representation of the HGF:

f s81(1 = 5)C-B-1(1 — sz}~ ds
o
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AT (B)T'(C ~ B) sinn(C — B) sinrB
- T(C) exp{inC)

F(A,B; C; 2)
A7

withA=b+», B=c+7, C=e+v. Using (A7) we obtain
after some simplification

a, b, ¢

7 1| Plo=" - VTA+j — g+7)
e e T(1+j7-0)
e, f
XF(-oty—i,1-0+7+j’ et} h)
(A8)
where P is a numerical constant independent of j'. The

asymptotic behaviour of the HGF appearing on the right
can be estimated from the formula [Erdélyi (1953)]'°
r{i-g-j"

Fla-ji',B+j'; d; 3) s

V=5 Td-B-;"
X [Py exp(- i(n/2)j") + P, exp(i(n/2)j")]

where P,, P, are numerical constants. The formula (A9)
shows that for |71~ the first or the second term will

be dominant according as I’ 0. Using (A9) we obtain
after some calculation

gt~ P = ’*’Oexp[i z(n/Z
imiy V=7 Cm~ji)rA+; -0 sinn(lo-»-7)
where the p051t1ve or negative sign is to be taken ac-

cording as Imj’$0. Using (A1), (A2), and (A10) we fi-
nally obtain the estimate

(A9)

(A10)

XG') =X =Py(= 3"V exp(®imj’/2) (1 = x)°7 (1 + )™

X<1+2\/—§>m+j

1+x

where the upper or lower sign holds according as Imj’
=0 and this goes to zero rapidly on S.
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The Clebsch-Gordan problem for O(2,1)
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The Clebsch—Gordan coefficients of the noncompact group O(2,1) representing Lorentz transformations in
three-dimensional space-time are calculated in the compact O(2) basis. Considerable simplification is

achieved by introducing a variable x and replacing all algebraic equations by differential equations. The

coupled state appears in the theory as a solution of an ordinary differential equation reducible to the
hypergeometric equation by a simple substitution. The coefficients in the Taylor-Laurent expansion of this
solution in powers of x are shown to be identical with the Clebsch-Gordan coefficients. The inverse

expansion, obtained by the use of certain identities for the hypergeometric function and the Sommerfeld-Watson
transformation, yields the normalization factor and the values of j appearing in the reduction.

1. INTRODUCTION

The Clebsch—Gordan problem for the group O(2, 1) or
its covering group SU(1, 1) was investigated by Holman
and Biedenharn (1966, 1968), *? Ferretti and Verde
(1968), * and Kuo—Hsiang Wang (1970)* amongst others
[Andrews and Gunson (1964), * Sannikov (1966, 1967), 8
Pukanszky (1961)7]. Holman and Biedenharn based their
investigations on the fundamental recurrence relations
satisfied by the Clebsch—Gordan coefficients (CGC).
Their first paper was mainly concerned with the coupl-
ing of two representations of the discrete class, and
other cases of coupling were considered in the second
paper. Unnormalized CGC for the coupling of two re-
presentations of the continuous class were derived by
Ferretti and Verde. Their investigations were based on
the formula

J1 Ja
@ (VA% (2)

=2 Cljuiafs mimz)C*(jrjaf; My1ma) Angomp, my smy(2)
7

where, the d’s are representation functions, the C’s are
CGC, and } denotes summation over discrete and inte-
gration over continuous j-values. The expansion was
obtained by the use of the Burchnall—Chaundy (1944)°
formula followed by the Sommerfeld—Watson transfor-
mation (SWT). The results of Ferretti and Verde were
extended by wang! to all cases of coupling except that
of the supplementary series. All these authors used a
compact basis for the irreducible representations (IR)
of SU(1,1). More recently, Mukunda and Radhakrishnan
(1974)° have made a departure from the previous prac-
tice in evaluating the CG coefficients in a continuous
noncompact basis. As a result of these investigations
many important results have been established and the
theory has reached a very satisfactory stage. The ob-
ject of the present paper is, therefore, not so much to
derive any new result as to approach the theory from

a new angle and effect certain simplifications.

A major step towards the stated objective is taken by
replacing the recurrence relations for the CGC by a
pair of first order differential equations for the coupled
states X;,, and X;,.. Elimination of x;,., from the two
equations leads to a second order equation for x;, which
by a simple substitution, can be reduced to the hyper-

3
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geometric (HG) equation. These equations are formally
the same as in the author’s earlier paper [Majumdar
(1958) 1 on angular momentum and only the values of

j1, 72, 7 are different. This difference has the consequence
of making the CG problem of SU(1, 1) much more com-
plicated than the problem of coupling of angular momen-
ta. As there are no simple CGC of SU(1, 1) for special
values of the magnetic quantum numbers, there is no
convenient starting point for the calculations, and it
becomes difficult to see which particular solution of the
HG equation would lead to the correct coupled state. The
situation becomes clearer from the series solution
zamzx’"z of the equation for X;,. The coefficients a,, as
will be seen later, are identical with the unnormalized
CGC. From the series solution the solution in terms of
the hypergeometric function (HGF) is obtained by com-
paring coefficients.

To determine the normalization factor (NF) and the
spectrum of j-values the simple power x™ representing
a product state is expanded in a series of the x;,-func-
tions. The expansion is brought into the right form and
the j-values are determined by the SWT. If b,,,2 are the

expansion coefficients, then the NF is given by (b;}‘,z/

amz)l /2_

2. THE FUNDAMENTAL EQUATION AND ITS
SERIES SOLUTION

As shown in Paper I, Sec. 2,'! the generators (f;, /5, j3)
=4(ioy, i0y, 0;) of SU(1, 1) can be represented as differ-
ential operators of the form

. . 2 . . d
—if.=—1ify +fz:£1'aT2, —lf.:-lfl—fzzgza_gly

poafe Oy 0
]3—2(§1a£1— 52852).

For the product state

(2.1)

5{1*’"1 ££1-m1n{'z+m2né'z-m2 — (51 5z)j1(n1772)j2 (é)m (ga—_rh_>ma
£z £17p
=u1piegmxme

the operators are

. . . o . . 0
—iF,==ifi. —ifs.=a <x(1—x)a+]1 +jax — a;{;),
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R . . Gl . ] d
—iF =iy —ify.=at [(Q=x)—+j +2+ a—
iF=ifmif=at (-0 i Eral) @)
. . g
J3=j13 tjes= aa_a
Operating on X;, and X;,.1 these give
1 X)D +_71 +.72x m]xjm_ (.7 m)Xdey (2- 33-)
[1 x)D + 4, +]2+m+ 1] Xjmt =0 +m+Dxm  (2.3D)
0
D=3
Eliminating X;,. from these equations, we have
{x(1 = )2 D3+ (1 = )jy +dp— m + 1+ x(y +j, +m=1)|D
+ (y = mYjp/x + (y + m)jox + 51 Gy + 1) + 4,02 + 1)
—-jG+D}G=0 (2.4)

as the fundamental differential equation satisfied by the
coupled state X;,. Although this is the same as Eq. (7)
of Ref. 10, the fact that j;, j,, 7 can now take negative
integral (half-mtegral) or complex values renders the
task of obtaining a solution and interpreting it much
more difficult. Writing G=7, amzx’”z we have the recur-
rence relations

s tmy+ DG —my + 1)am2+1 +(F,+F,-F+ Zmlmz)amz

+ (jp =y + 1) (G g +1)am2_1:0 (2.5)

where, Fy=3( +1),
restricted j;, j,, 7, is

etc. A formal solution, for un-

= o gy = Gy = g, o=+ 1

@ _ )
Ay =1 Jatmy + 1,4 —my +1, = 2j,, —c=m+1 32
with

—Jg= Mgy —0=j,—0tj+];
3Fé1):3F2 1 y (2.6)

- 2jp, = 0=m +1;
Jo=h1=Js 0=j Tz t1.
That (2. 6) satisfies (2.5) is easily verified by using the
relation
—(d=a)e~a)F(a=1)
+{-bc-als=1)+(d-a)(e-a)
+ls—1+(=2a+b+c~1)(1-2)]aF(a+1)
+al@a+1)(1-z)Fla+2)=0 (2.7

where F(a) =,F,(a,b,c; d, e; z), s=d+e-a-b-c.

Evidently, it should be possible to obtain another
formal solution for unrestricted j,, j,, j by the operation
4, that is, by the simultaneous interchanges j; ~—j,,
M, — — my. This second solution has the form

@ ~Ja e @)
'=r F.
2 Jatm,+1, jy—m +1, =2j;,~c+tm+1|¥2

— i =y, = ot m 1
a

where
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+(a-b)a-c)(1-2)]F(a)

~jtmy,~0=j,-0+j+1;

3F2(2):3Fz 1 (2.8)

~2j,=-0+tm+1;

Let us now assume that one of the representations
coupled belongs to the discrete class. The assumption
simplifies the mathematical problem a good deal and
removes all uncertainties with regard to the conver-
gence of the various series arising in the problem. If
Jj» belongs to the positive discrete class D*, then the
coefficients a,, may all be taken to be zero for m, < —j,
without violating (2.5). The series, in this case, begins
with m,=—j, and the coefficient has the general form
(2.6). If, on the other hand, j; belongs to the negative
discrete class D7, then the series begins with niy,=m
—j1 and the general form of the coefficient is given by
(2.8). Thus, the unnormalized CGC is obtained easily
from the series solution of (2.4) when at least one of the
representations coupled belongs to the discrete class.
When j, belongs to D*, j, belongs to D™ and m lies be-
tween j, Tj, and — j, — j,, we are at liberty to choose
either form of the CGC. In this case it is easily shown
[Slater (1966)['* that

— 2y —0=m+ 1, = jy—j, =t

F=r : . F®.
872 -2, —o+m+1,j,—j,-j—m |3?

(2.9
For the convergence of the various series arising in
the subsequent sections it is necessary to assume that
x is a real or complex variable lying in the region 0
< |x] <1, Nothing prevents us from making such an
assumption for ¥ may be regarded as a hypothetical va-
riable introduced merely to reproduce the results of
operation by the generators.

We conclude this section with a remark on the con-
vergence of the expressions for the CGC for three con-
tinuous series. I j;, j,, 7 all belong to the continuous
(nonexceptional) class D°, then ,F{’ diverges for my ™%
and ,F{* diverges for m,<— 5. In this case one must
use alternative expressions for the coefficients which
remain convergent for all values of the magnetic quan-
tum numbers. One such expression is

—Jg ¥ ¥y, =Gy — 1y,
r . .

Jatmgtl,—o+j+l, —jp-j—ny
-j- 777',].[)_.7.;].1 —-ny +1;

ol 1. (2.10)
Jo=m + 1, = jo=j—=11q;

That this is a solution of (2.5) is easily seen from the
relation

(d=a)(e-1)Fla-1,e-1)
+lale=a) +(e= 1 (a=d) +(b - a)(c - @)z]F
—ale—a)(1=2)F(a+1) _% S(e=b)e=c)zF(a+1,e+1)
=0 (2.11)
where

F=3F,(a,b,c;d,e;2),Fla-1,e-1)

=,F,(a-1,b,c;d, e=1; 2), etc.
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From (2.10) another expression for the coefficient is
obtained by the operation ¢. A third expression is

Jitie=jt+t

=)ermer | . .
( Jatmy+ 1, ji—my~j+1l

—Jo= Mg Jo—1, =J=m;
X 4 Fy 17. (2.12)
h=my=j+1,jo—m+1;
3. THE DISCRETE PART OF THE SPECTRUM OF
/VALUES

For the determination of the spectrum of j-values
appearing in the reduction it seems necessary to express
the solution of (2. 4) in terms of known functions of an-
alysis. This is easily done by the substitution G
=x"72(1 = X)°-'F which reduces (2.4) to the HG equation

x(1=x)F" +[2j + (1 = 0)(jy = jo — m = 2j + 1)]F’

+({+m)(jy-)F=0. (3.1
Two solutions of interest to us are
G(l):x-sz(l)

=x (1 =)V (-, o= Jy o-m+1,50) (3.2)

and

G(Z) :x-j1+mE(2)
=X A= 4, = o= G, = Gy F L, ),

(3.3
These are identical with the series solutions of Sec. 2.
Equation (3. 2) corresponds to positive discrete j,, and
(8. 3) to negative discrete j,. I j,, j; both belong to D*
(D7), then it follows from elementary considerations
that the spectrum of j is purely discrete, of the positive
(negative) class, and lies in the region j<j; +j,. jo—m
+1, in this case, is negative but numerically greater
than j, +m,. If j, belongs to D* and j, to D", then one of
the two cases must occur: Either (i) m, will attain the
value ~j, or (ii) m; will attain the value j;. It is easily
seen that jo— m = 0 in case (i) and <0 in case (ii). So,
the denominator catastrophe does not happen when the
HGF’s in (3. 2) and (3. 3) are expanded.

The discrete part of the j-spectrum is determined
easily by applying the operator J;=j; 3= j; 3 to the
coupled state and using the hermiticity condition. For
positive discrete j the coupled state can be written in
the alternative form

Pim= "X = ™1 =2)722° I (= j—m, jy = j, = 2], 2)

withz=1-x. (3.4
Operating with
- Gl 0
—ag—+ -z)—
s *Ta 2(1-2) 0z’
we have
. % — 2 (o +7)
Jod. = (it 2_(70._7)(0' iy
3% im ( J m) 2]2(4]'2_1) j=lm
Ry —i 1) ®.
+](7+1) ‘1>Jm+2(c J 1) q’ﬁ-l m* (3-5)
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This result is obtained by using the relations

dF ab ab{c-b)(c-a)
— e —— . - . -+ + +
(1 Z)dz - —Cz((,'_+i)—_ zF(a l,b l,C 2)
(3.6)
and
(1) p=@le=ac=0) apiiy p41 c+2)

TTAESD

clc—a=-b-1)+2ab
c(c-2)

-zF+Fla-1,b=1,c-2)

with F=,F(a, b, c, 2), etc. (3.7
The hermiticity of J; now gives
A 2 (0*2_j2)4j2<4j2_ 1)
. R e 3.8
iam| (=m0 +i1GE- 79 (

where 4,,, is the normalization factor (NF) of &;,. This
equation determines the NF and the range of j-values,
but with a degree of uncertainty. Since the remaining
factor on the rhs of (3.8) is positive for m? > 3%, the
ratio 14;,/A;, | will be positive if (0*% - j2)/(j2 - /%)

is so. For discrete ji, j, the latter quantity is positive in’
the region j <j; +j, and also in the region j > - /. The
first region has an upper boundary at j=j, +j, which j
cannot cross, and the second region has a lower bound-
ary at j= - |j7,]. It is not possible to decide from (3. 8)
alone in which of the regions j will lie in any particular
case of coupling of two discrete representations. The
two regions are separated by no man’s land stretching
from - |j,| to j; +j,. For the coupling of one discrete
and one continuous representation the situation is more
definite. Equation (3. 8), in this case, permits all values
of j<-3%, —1toappear in the reduction,

4. THE SOMMERFELD-WATSON TRANSFORMATION

For the determination of the NF and the complete
spectrum of j-values it is necessary to expand x/2*"2
{or x1°™) in terms of the coupled states X;,. The ex-
pansion coefficients are complex conjugates of the CGC
to be determined. We start from the identity [Erdélyi
(1953) ]

-7 ctn=1=-n;

- (a),(b)
M=, ()" F 1
=0 nl{c+n-1), ¥ 2 a, b;
X(1=x)"Fla+n,b+n, c+2n1-x) (4.1)
with
Y=jytmy n=0-j-1, a=-o-mtl,
b==2j, c==20+2. (4.2)

In the case of coupling of Dj, and D}l, (4.1) and (4.2)
give
- 0+m,j0‘j;—0'j

ylatma — Z)

i=jy+ig j+nl+1:_2j2’-2j_1’ o—j

X F L = xY12 F(= j = m, jo— j, = 2, 1=x)(4.3)

_sr otm, jo=j,=0~j,=2j,=j,+m
I ljtmA, =2, -2 1,0-j4,—j+m,—j—
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X FPED = Eb‘“E‘“ (4.4)

The values of j, therefore, decrease from j; +j, to
- in steps of unity, the ratio of the NF’s of E®’ and
%22 s

A b(l)* 1/2
XLZ' = a”'z with
m mp

_j2+m2, "jl +m1) gtm
1)

r P
2 Jatmg+ 1,4y +my +1, = 25, —jo+m|®

a

and the CGC (without the phase factor) is

L(o+m)

Wy Nt /2 _
(bmz amz) (=~ 27,)

SIpél)(__ 2]_ 1)1/2.

Jo=dy= 0=, =y tmp = jy +my
r . , . . . .
=-2,0=~1, —]+m;]+m+1’]2+m2+1’]1+m1+1
(4.5)

The CGC for D' ® D, is obtained from this by the oper-
ation ¢ .

By using the expansion (4.1) we have obtained a com-
plete solution of the CG problem for the coupling of two
representations of the positive (or negative) discrete
class. In other cases of coupling the rhs of (4. 3) con-
tains unwanted values of j, and, for obtaining the cor-
rect expansion it becomes necessary to apply the SWT.
We write the rhs of (4.3) as a sum of residues at j
=0-n-1 of the analytic function

‘j—m:jo-j:‘0+j+1,*0—j
21 =T) i 1, —oem+1, -2,

Xy PO e ) (==, o=, = 25, 1= %), (4.6)
This sum is equal to the value of [f(j)dj on a suitably
defined contour in the j-plane. However, instead of this
contour it is more convenient to choose a larger one
consisting of the infinite semicircle on the left and the
line Rl j=-3. Besides the poles at ¢—n—1 the larger
contour C may enclose other poles originating from the
I'-functions in the numerator of the integrand. If j, be-
longs to D" and j, to I, then the additional poles occur
atj=-m+k (k=0,1,.-+), and, hence, lie within C
only if m >k > 0. The poles at j,+ &, —o+k, clearly,
lie outside C. Hence,

J f() dj=x°2""2+ (sum of the residues at — m +k).

A study of the asymptotic behaviour of f{j) for large ||
(see Paper I, Appendix) shows that the integral vanishes
for the semicircular part of C. Evaluating the residues
at —m +k and folding the integral about the real axis

we, therefore, have

-m

xig*mz_ +Zf-1/2*i‘° * F(I)E(l)
_-1/2(-3/2)
X [ Jo=Jy—0titl,—0o-j,igti+1,=2j
C oMt =2y ML, = m, =M1, = 2= 1
S pUM pdx _ . ( picp e 4;
~;b,,,a B g [ b8 ED  dj, (4.17)
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where

n(j)=1 for discrete j,
=—cotn(j +m) for continous j.

The factors involving the I' - functions in b, and b5
are positive, and

oFiVGE, §) = 4F,

~J
=3F% 2

$GE, 5%)

-mZ;jO_j)jO +j+ 1,
1

Jo=m+1, = 2j,;

—ji=my, jp-m+1

=, Fr (4.8)

Ji=myt+tl,—o—m+1]|’

by Slater’s identities. The quotient b,.*/a, is, there-
fore, positive for both discrete and continuous j, and the
CGC, apart from a phase factor, has the value

oF§V (=2 + D) 3T (= o= m + 1) (= 24,) |

Jomdh—otjtl,— o=, jytit 1, =yt g\ 2
x| .

=M

j2+m2+1;j1"m1+1:j+m'+1:_j+m (4-9)

In writing this a phase factor, equal to the square root
of the coefficient of 4F5’ in (4. 8), has been omitted to
make the expression look like (4.5).

Equation (4.7) and the equation obtained from it by
the operation ¢ give the structure of the CG series for
the products Dj,® If :

-0

2

Dt ® I =
J 1
2 ! j=-1(-3/2)

D+ [{Y4F I dj. (4.10)

Here, Y denotes a direct sum, [ denotes a direct inte-
gral, and the values of j in the sum decrease from a
maximum(— 1 or — 3) to — = in steps of unity. Since the
poles of £{—j+m) and ['(- 2j— 1) cancel at the point j
=-3, and since the point j= 0 lies outside C, the re-
presentations Dy and D ;, do not occur in the
decomposition.

The last case of coupling to be considered is that of
Dj, and Dj,. To determine the range of j-values and the
CGC in this case we have to use both the solutions of
(2.4). We shall use Eqs. (2.6), (3.2), (4.6) if m, attains
the value —j,, and the corresponding equations obtained
after the operation ¢ if m, attains the value j;. The
function £(j) and the function f(j) (obtained after the op-
eration ¢) have a set of simple and double poles lying
along the real j axis. With the double poles and the
poles in the right half of the j plane we are not con-
cerned. The simple poles of f(j) lie in the region
and 0—j, ifm=<j<0

O0—-—m if jozm=0.
The simple poles of £(j) lie in the region
O—w—m if jysm <0,

0—=jo it m=j7,>0.
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Therefore, the spectrum of jhas a discrete part only
if m and j, have the same sign, and the CG series has
the form
o —_— -(smaﬂer of Ligl,Iml) Dror -4 f—l /20 ‘°lf 5
2T (e ! e 14
Expressions for the CGC are derived in the same man-
ner as in the previous cases.

Unnormalized CGC for three continuous series have
been already obtained in two different forms in Sec. 2
by solving the recurrence relations (2.5). The deter-
mination of the NF and the spectrum of j-values pre-
sents difficulfies in this case because of the apparent
absence of a compact analytic form of the coupled state.
However, the difficulties can be circumvented and the
above technique extended to this case also if the domain
of variation of the complex variable x is suitably re-
stricted. Calculations for this case are under way and
the results will be communicated shortly.
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New identities on the Riemann tensor*
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A set of new identities which involve second covariant derivatives and quadratic forms of the Riemann
tensor are proved. These new identities can be thought of as integrability conditions derived from the
equations that define the Rieman tensor in terms of the affine connections.

1. INTRODUCTION

We all know the system of equations which define the
Riemann tensor R% ;» in terms of the affine connections
I",¥].. These equations are

(3,7}, - 8,T%) +(Ie, I T2 T! )= R},,. 1

ki) k™ aj ij= ak

It is obvious from Egs. (1) that R}, is antisymmetric
with respect to the indices j and &, that is

Rlijk: —R%kj‘ ()

If we assume that the connections are symmetric, that
is I‘ij: I‘;i (from now on we all assume that the con-
nections are symmetric), then we have

R! =0. (3)

ijk

+R!

Rij

+ R}

jRi
Equations (3) involve no derivative of the Riemann ten-
sor. The famous Bianchi identities which involve first
order covariant derivatives of the Riemann tensor are

R! + R} =0. (4)

ijkim

.+ R!

ikm;j imjik

Equations (4) can be proved to be independent of Eqs.
{2) and (3). That is, Egs. (4) can not be obtained from
the derivatives of Egs. (2) and (3). We can give these
identities some meanings if we regard Rbk as given
functions and Egs. (1) as partial differential equations
for Ij,.** From this point of view, Eqgs. (2), (3), and
(4) are integrability conditions for Eqs. (1). Now, be-
sides Eqs. (2), (3) and (4), are there any other in-
tegrability conditions ? The answer to this question is
yes if the Riemannian space is of high dimensions. For
example, in the two-dimensional space, Eqs. (3) and
(4) are trivial. But in three-dimensional space, Eqgs.
(3) and (4) are not trivial at all, It is the purpose of this
paper to derive new integrability conditions of Egs. (1)
for high-dimensional space and in turn they are the new
identities on the Riemann tensor. We give the new iden-
tities in Sec. 2 and some discussions and comments in
Sec. 3. We prove the identities in Appendix A.

2. THE NEW IDENTITIES

We can obtain the Bianchi identities, Eqs. (4), from
the following procedure:

Step 1: Differentiate Eqs. (1) and get
Ie, T, (5)

1
3,0, T = 2,0, T4, =3,Ri;, + 2,(T4, T, - T4 T,

ijk
Step 2: Change the order of indices j, k, m, from
Eqs. (5) using the rule j ~% — m —j and get

8,8, — 2,8 Th =2 Rl +2,(0eI T2 T8 (6)

im=ak ‘"
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Step 3: Repeat step 2 from Egs. (6) and get
akamr%j - akajr}m: akR;mJ‘ + ak(r\q Fl - ra_r‘l ) (7)

im™ aj 1i " am
Step 4: Add Eqgs. (5), (6), and (7) together and get
ths=rhs.

The lhs is equal to zero since ama].rﬁk: aja,,,r;k, and the
rhs contains first derivatives of the Riemann tensor.
After some algebraic manipulations, we can convert
the rhs into covariant form. The covariant form version

of the rhs is the famous Bianchi identities.
Now we can use this procedure again.

Step 1: Differentiate Eqs. (5) and obtain

3,0,0. T}, -3a 08 t=233 R, +33 (TLT, - T ). (8)

‘m R4 iik iz" aj
Step 2: Change the indices j,k,n, and m from Egs.
(8) using the rule j %, —»n—~m —j and get

2,2,8,T%,-2,2,0,Th=3,08,R}, +2,0,(T%, T, —T2TL) (9)

m- i n i in” ak

Step 3: Repeat step 2 from Egs. (9) and get

ajakanrtm - ajalzamrlin: ajathnm + ajak(r'%nrzlzm - r‘%mr;n)‘
(10)
Step 4: Repeat step 2 from Eas. (10) and get
aJ%aanaml-‘%ij - akanairlim: akaanémj + akan(rgmrij - F%jrzllm)‘
(11)

Step 5: Add Egs. (8), (9), (10), and (11) all together
and get

lhs =rhs,
The lhs is equal to zero since 3,3 3,15 =28 2 T}, The

n“m i itntm
right-hand side contains second order derivatives of the
Riemann tensor. We can convert the rhs into covariant

form. The covariant version of the rhs is

R;jk; mn + R;jk snm + Raianclzmk + R?mkRian

+ Rl g T Rl jn R R T BB

+ Rlimn s ik + R;mn; kj + R‘;kaijn+ R?njnRiak

Rt T Rhngime T B flans T RopsRium = 0- (12)
Or, in short hand notation,
FRY et Rijesmm ™ BonsRomn T RomiRin) = 0. (127)

Equations (12) are the new identities on the Riemann
tensor.
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3. DISCUSSIONS AND COMMENTS

(1) The identities, Eqs. (12), may® be derived from
differentiation of the known identities, such as
Egs. (2), (3), and (4). These new identities can
be thought of as integrability conditions derived
from Egs. (1).

(2) These identities become trivial when Egs. (1)
become linear, that is when the (I'T' - I'T) terms
are absent. So these identities are a kind of mea-
sure of the nonlinearity of Eqs. (1).

(3) For three-dimensional space, Eqs. (12) can be
derived from Egs. (2), (3), and (4). (See Appendix
B.)

(4) For five-dimensional space or higher, there are
still new identities on the Riemann tensor.

(5) Perira® derived some identities on the Riemann
tensor which from the point of view of the author
are all dependent on Eqgs. (2), (3), and (4).

APPENDIX A

We define the notation F(+++) first. F(+++) is an
operator which acts on the indices j, &, m, and »n with
the following property

F(nmijk) = (nmjk) + (mjkn) + (ienm) + (knmj). (13)

For example,

+ R! .+ R!

inm3kj imisnk”

+R}

ikniim

F(R} )=R;

ijky mn ijkmn

(14)

With this definition, we can easily derive two useful
properties of the operator F(s--):

(i) F(A+B)= F(A)+ F(B), (15)

(i1) Flumik)= F(mjkn) = F(jknm) = Flknmj). (16)

Since

R} =9 (R}

ijkimn— ijkim

-TIe R!

in Tajkim

Y+ T Re

an “ijkim

_Te pl ~Te pl —TIe 1
F!'nRiak;m rhnRija;m anRijk;a’

we get

F(R!

ijks mn

= F(3 R!

nUijky m

+R! )

iikynm

1 pa —Te pl _Ta p!
+ FanRijk; m rinRajkm rjnRiak;m
-TIe R!

mn”"ijkia

-Ie Rl

R “ijay m
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+ terms with » and m interchanged). (18)
But
F(r?nRiak; m + r:nR%ja; m + F'Jz'mR%ak; n + rng}ja; n + P!rlnnRijk; a)
= F(r?nR%ku;m + r':rjR%ak: m) + F(F‘rlnj(R}m;k + R;ak; n + R:kn; a))
=0. (19)
Thus Egs. (18) become
F(R;jki mn + R%jk; nm)
= F(anR%jk im T r;nR‘;jk;m - F?nRzlljk;m + amR%jk; n
+ rzlsz%jk; n~ r“;mRijk; n_ r?lmR;jk; a)' (20)
Substituting the following equation
R%jk im— amR;jk + leszgjk - PCi'mR;jk - r?mR%ak - r\aka;ja (21)
into Eqs. (20), we finally get®
F(Rijk ymn + R%jk snm + R%HJR:Lmk + Rgrlanliak)
= 2f‘(anamR;jk + anam(raijr‘:k - r‘%kr‘;j)) (22)
=0.
APPENDIX B

For three-dimensional space, at least two of the
indices n, m, j, 2, must be equal. Let us say n=m,
then the lhs of Eqs. (12) become

R;jk P— R;jk P— R;km;jm + R}km; mi T R:mm;kj + R}mm;jk
+ R;mj; mk + R%mj;km + R[t!ij;mk + R?mkRiam + R%mkRzlxjm
+ R‘}zzimR%am + R%ij;km + anka%aJ‘ + R?kazlzmj
+ R?nij:ak: (R%jk im T Rikm; it R}mj;k); nx2=0.

Thus we prove the statement that Eqs. (12) are derivable
from Eqs. (2), (3), and (4) in the three-dimensional
case.

*Work partially supported by the National Science Foundation
Council of Taiwan.

IC.M. Pereira, J. Math. Phys. 13, 1542 (1972).

2C. M. Pereira, J. Math. Phys. 15, 269 (1974).

3Thanks to Professor C. M, Pereira and the referee for
pointing out this possibility.

4We can use normal coordinates to simplify the calculation.
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The semi-Euclidean approach in statistical mechanics. |.
Basic expansion steps and estimates*

Paul Federbush
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The semi-Euclidean formulation, developed in constructive quantum field theory to handle boson—fermion

models, is adapted to the statistical mechanics setting.

INTRODUCTION

In Ref. 1 D, Brydges and I presented a formulation for
treating boson—fermion models, taking powerful tech-
niques for using Euclidean fields to study Boson models
in constructive quantum field theory, and combining
these with operator methods to handle the fermions.
This, the semi-Euclidean approach, now seems like
a useful framework to study such theories. In Ref, 2
Brydges studies the generalized Yukawa model using
semi-FEuclidean methods. In Ref. 3 techniques patterned
after those in Refs. 1 and 2 were applied to prove the
classic theorem of Dyson and Lenard* on the stability
of matter. In the present series of papers I intend to
introduce a full semi-Euclidean formalism into statisti-
cal mechanics, furthering the flow of ideas from con-
structive quantum field theory into more classical fields
of physics.

Ginibre has made beautiful applications of functional
integration techniques in statistical mechanics.’ The
formalism to be presented here will have many points
in common with that of Ginibre. The interlacing we will
see between the viewpoints of Refs. 1 and 5 seems very
satisfying. The interactions in the stability of matter
problem— — 1/7 forces between positively and negatively
charged particles—would not lead to stability in the
absence of the kinetic energy generated by the exclusion
principle for the negative charges.® This effect may be
difficult to make explicit in the formalism of Ginibre,
and the potentials considered in Ref. 5 exclude such
forces. Our first long range goal will be to obtain the
existence of the infinite volume correlation functions
for the matter problem with the interaction 1/7 modified
to exp(— mf)/r (this interaction still is excluded in Ref.
5). The extension to the long range 1/7’ interaction is
deferred.

Our avenue to the infinite volume correlation functions
will hopefully be the adaptation of the cluster expansion
of Glimm, Jaffe, and Spencer’ to the present formalism.
In the present paper the cluster expansion is not de-
veloped. However, we do present some of the expansion
operations to be used—differentiation of the exponent
and a pull-through formula. The pull-through formula
is used to generate a Ginibre-like expansion for cor-
relation functions. We also present operator estimates
substituting for the “defermiation” estimates of Ref. 1.
These estimates—to be used in the proof of convergence
of the cluster expansion—convert operator expressions
to a context with commutivity. As an example we esti-
mate some terms in the expansion of a correlation
function.
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The field theory of boson models, the field theory of
boson—fermion models, and the field theory of second
quantized matter in statistical mechanics provide three
types of field theories—with striking similarities and
striking differences—that will develop with mutual en-
richment.

1. NOTATION
We work with H of the form

H=Hy+% [ dz;dz,: W(zy) Vizy,2s) Tdlzy):

with V symmetric in z; and z, and H; the sum of a multi-
ple of the number operator with the kinetic energy form
for Dirichlet data on the boundary of a fixed volume |/.
 and ¥ are annihilation and creation fields for a fermion
or boson particle. The extension to more general po-
tential interactions and more than one species of particle
is straightforward (such as for protons and electrons
moving in a fixed background charge). The objects from
statistical mechanics we will study are of the form

Tr[eXp(— BH) 5(«"1» li) cee d"(xm In)]7

where the {; correspond to imaginary times, the {; de-
creasing 0 <{; <8, and the ¥(x;,t;) are obtained from
#(x) by progagation under H for an imaginary time (;.
We now expunge this definition of the ¢(x;,?;) {rom our
memory and follow an alternate line of development.

(1.1)

(1.2)

We define ¥(x, [} = ¥(x), the { introduced only as a label
to enable us to time order. H(f) is H expressed in terms
of the #(f) and P({):

H(l) = (= 1/2M) Pz, 1) V¥(z, ) + p Tz, 1) d(z, 1)

+3: Tz, 1) Ve, 20) Tey, 0): (1.3)
(integrals are suppressed). (1.2) becomes
Tr{T exp[- f: H() dH] Py, 1) oo 9y, 1,)] (1.4)

with 7' the time-ordering operation familiar to physicists.
In fact (1.4) is essentially the interaction representation
with the interaction taken to be the full Hamiltonian—so
the interaction fields have no true time dependence, as
our P(x,?). Taking (1.4) as a serious expression to
manipulate and perform estimates with is the heart of the
semi-Euclidean approach.

We also want an expression for the path space mea-
sure generated by the one-particle free Hamiltonian

(expl- s(- 1/2M V' + D) = [ dx [adus,,dlx),
(1.5)

where [dp® , is a measure on paths x,({), 0</<s,
XY 4
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connecting x and ¥ (and lying in [/).

2. EXPANSION STEPS

In this paper we consider only two operations. The
first of these, differentiation of the exponent, assumes
H(t) depends on a parameter A, and so we write H, ().
This happens by allowing V(zy, z,) to depend on A, and
so, Vy(zq,2,). We write (1.4) as

Tr[T exp(- {BHA(t)dt)R]. 2.1)
R a polynomial in fields.
Differentiation of the exponent
-dg— Tr[T exp(- f H,(t)dOR ]
8
:J ds Tr (T exp(~ KHA (1) dt) dH‘(s)R). (2.2)
0
The other operation is a pull-through operation. (The

pull-through operation used in Refs. 1 and 2, different
from the one presented here, may be useful in some
circumstances. )

Pull-through formula

T exp(~ [ H@)dt) Tix,a)
=T [dy [ duey $,b)

X exp (_ LU THO V), 2 W(z)]dt) @.3)

We will not write the similar expression for ¢ and more
general potentials.

This pull-through formula provides the connection
between the semi-Euclidean formulation and the work
of Ginibre, as we will see in the next section.

To prove (2.3), we consider the equality

T [ av [ s T, 0 exp(~ [ 1@ + Ve 23T00) 101

—~ T exp(- j;bH(i‘)df) Plx, a)

b
d
:1[ ds EE

xexp (- [ 010+ Vs T ) | .9

and verify that the differentiation with respect to s in
the brackets gives zero.

[T exp(= [ H@dr) [ dv [ dpl” Ty, s)

3. GINIBRE-TYPE EXPANSION

For clarity we confine our attention to the following
correlation function F(x,, £y, x;, £;):

F =Tr(T exp[- fOBH(t)dl]¢(x2,t2)$(x1,tl)) (3.1)

with 81, ># > 0. We now use the pull-through formula
(2. 3) to move P(x,?) to the left. We may also use the
relation

ﬂ)—(x,o)za(x,ﬁ), (3.2)

following from commutativity of the trace—see (4.1) in
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+W1 W, +W1 W, + FIG. 1. Graphl—‘
Wy W, cal representa-
V<] 0

A 0 A 0 tion of G;.
Gy Gy Ge

the next section—giving rise to well-known periodicity of
our correlation functions. As ¥ is continuously moved

to left, and re-entered at right by (3.2), a series of
terms is generated by the possibility of contraction with
¢ after any number of sweeps.

¥(x) $y) - €F) Y(x) = 6(x - ) (3.3)
with e =1 for bosons and e =— 1 for fermions. (3.1) then
becomes

F=Gy+G +Gytrooe+Gy+Ry,. (3.4)

The G; are represented graphically in Fig. 1. Expres-
sions for Gy, G, and Gy follow:

GO:Tr[deui:f;zl) exp<- jo"H(t)dt)

X eXp(— jt‘tz [V(xp(t),z)ad)(z)]dt)] > (3 5)

G1_(6)Tr[dew fdu(ﬂ'ti) f uw L exp(— fﬁH(t)dt)

x w1

Xexp(_ fot1v(x,,1,z)ﬂ)' zp(z)dt)exp<—ftz V(xpo,z)-zljgb(z)dt>

xexp(~ [ 117 a2 0) + Vi 2)T00E)
+ V(x,,o, xpi)]dt)],

Gy=()" Tr{T S awyedoy f AL e dul, L,

(3.6)

oo dp? exp(—ﬁH(t)dt)
Wiy Xy 0

xexp[_ fotl <J§N1 V(x,j,z)ﬁz/)(z)+ 2 V(xj> s X, )) dt]

I1=i<y

N-1 —
Xexp[—j:: (Zg Vix,, 2) dle)

J=

+ Z: Vixp,s % ))dt ]

0= i<y

N
Xexp[— f (E Vx, ,2) Piz) + Z} V(x,,x,_) dt] .
ty \J 0<i<y i’7P)

3.7

This expansion may be compared to the expansions of
Ginibre in Ref. 5. We will not here make explicit an
expression for Ry. However, in Appendix C an explicit
expression for R, is given, and estimated as an example
of the operator estimates given in the next section. In
Appendix B G, is similarly estimated. Future applica-
tions of the semi-Euclidean formalism depend on our
ability to control estimates-- Appendix B and Appendix
C are simpler than the estimates needed in the cluster
expansion, but use the same basic techniques.
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4. OPERATOR ESTIMATES

We collect here, first, well-known estimates we will
use concerning traces; recall an operator estimate
from Reif. 1; and finally present a cute new estimate for
traces in a theorem.

We begin with the well-known facts:

Tr(AB) = Tr(BA), (4.1)
A=B = Tr(e™) <Tr(eb), {4.2)
A=0 = Tra)=0, (4.3)
A=2B=Tr(CAC*)= Tr(CBC*), (4.4)
|Tr(AC)| <[Traa*)]'/2-[Tr(CCH)]'/?, (4.5)

|TrABC) | <[TrAA®) |2 ||Bll - [Tr(CCH]/2.  (4.6)

We recall from Ref. 1:

Estimate: Let H(t) = C(t) with C(f) a numerical function.

Then

I T expl— [’Hu)dt)u < exp(= fns c@)dt). 4.7

The following theorem is an estimate similar to this
last estimate, but for traces.

Theorem: Let H(!) = H+ C(t) with C(t) 2 numerical
function and H a /-independent operator. Then

| (T expl- [ H@)at))| < Tr(exp(- BH) - exp(~ jn“’ cwa).

(4.8)

A proof of this theorem is presented in Appendix A.

APPENDIX A: PROOF OF TIME—ORDERED TRACE
INEQUALITY

The inequality follows by taking limits in a discrete
form of the result, stated in the following lemma, and
using (4.2). The lemma is a special case of Corollary
3.2 in Ref. 8.

Lemma:

|Tr(A, oA, | < I;I{Tr[(AiA?‘)ZN'l]}”zN. (A1)

(The restriction of the product of A;’s to contain a power
of two elements is a function of our method of proof. )

Proof: We prove the result by induction on N. First
for N=1:

‘Tr(A1A2)\ g['I‘I'(A1A)1k)]1/2"[Tr(AQAﬁ]”z. (A2)

This is just (4.5). Assume (A1) holds for N and proceed
to the N +1 case:

|TrA, oA y,1) | = [Tr®B, oo2 B,y) | (A3)
with
Bi=Ay 1Ay
N-1 N
< T8, BY*  I}'/° (A4)

by the induction hypothesis. We consider one of these
terms, i=1, for notational simplicity:
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N-1 -
Tr(B, B¥)*  |=Tr{(A¥A,4,a0" ™). (A5)
(4.1) was here used. By the induction hypothesis,
N
<ATrla,ap? F 2 {Trl(aga ) 1112 (a6)

Substituting (A6) back in (A4) we obtain the (N + 1)th
relation, completing the induction,

APPENDIX B: ESTIMATE FOR G,

G, i1s given in (3.5). To obtain an estimate for G,, we
require two estimates; we write as follows:

Hy/2+4% [ dzydz,  3plz) Ve, 20) Tpley) : > K, (B1)
Hy/2+ % [dz dzy: dpiz) Viz,,2,) Th(z,):
+ [dzVix,z) §(z) = K. (B2)

We do not discuss evaluation of K, and K, here, as de-
pending on |/, the volume, and the interaction. However,
it is important to note that in these evaluations the
kinetic energy arising in the Fermion case may be ex-
ploited (see Ref, 3). We now use (4. 8) to obtain

|Gy | < Trlexp(— pH,/2)]- exp[~ K, (i, ~ 1,))

x exp[— Ko(B - (ty— )]
(M/2m)%/* M Ixz—xllz)
TN eXp<' 3 -1)
APPENDIX C: Estimate for R,

(B3)

We graphically represent R, in Fig. 2. For definite-
ness we require 2/38 > 1, > #, > 8/3, this is not essential.
Having pulled-through ¥ past t, without contraction with
¥, we stop at 2/38 and then pull-through # to 1/38. The

resulting expression for R, is
R1:efd701d11)2fdu(2/38't1)fdu(t2_1/3B)

Xqp Wq Wy, Xg

x Tr[T exp(= j;/SBH(t) dt) Y., 2/36)
-exp(— ftz/gﬂ[H(i) + V(xp1,z)$zp(z)]dt)
exp(= [2[H0) + Vi 20 Te)

+ Vi, 2)T(z) + V(x,,l,xpz)Jdt)

. exp(— fs/t; [H{t) + Vi(xp,,2) i;{)(z)]dl)

X p(w,, 1/36) exp(= _K/SH(t)dl):l ) (C1)
We abbreviate this as
'3
R,=¢[ dwldwzfdu1du2exp<_ ftlz V(xpi,xl,Q)di>
XTr[TE, (0, E,EE ) Es], €2

where the E; are the obvious exponentials, except that,
as indicated, a portion of E; has been separated out
explicitly. We use (4.6):

\ Wy MWZ \ FIG. 2. Graphical representation of
17 t R,.

B B BB 0
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IR, | < fdwlszfdulduzeXP(— f:z V(l,Z)dt)
1

x {Tr[(TE)) p(w,) p(w ) (T*EF) ]}/ ||E; E3 E,li

x {Tr[(T*E¥) blawy) ¥0,) (TE5) [} /2 (C3)
using
2y <x+yd (c4)
we get
2|R|<A+B
with
A= [dw, [ dw, [dy, [du, exp(— j;tz V(1,2)dt)
1
X Tr[(TE) Plw) Yoo NT*ED)] IE, E5 El
and a similar expression for B.
Let
ty
| [du, [ dp, exp(-—j; v{,2)dt) | <cC (C5)
1

for all w; and w,. This inequality, a statement con-
cerning two particles interacting by a mutual potential,
can be estimated by standard methods. We get
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A <C Y exp{-[(2/38 - 1)K, + (ty = 1)K, + (t; = B/3K,T}
X Trlexp(~ 2/38H,)N]

K, is defined similarly to K; and K;. The methods of
Appendices B and C can be applied in much more com-
plicated situations, and can, very essentially, include
localization.

(C6)
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The semi-Euclidean approach in statistical mechanics. Il.
The cluster expansion, a special example*

Paul Federbush

Department of Mathematics, University of Michigan, Ann Arbor, Michigan 48104

(Received 29 April 1975)

A form of the Glimm-Jaffe-Spencer cluster expansion, adapted to the statistical mechanics setting, is
shown to converge for certain two-body potential interactions. The theory treated corresponds to negatively
charged fermions and positively charged bosons interacting by a modified Coulomb interaction—the 1/r
potential, cutoff at high and low momenta, becoming (1/r)(e~ “"—e~ ).

INTRODUCTION

In Ref. 1 a formalism was presented to adapt the
semi-Euclidean approach from constructive quantum
field theory to statistical mechanics. In the present pa-
per the Glimm—Jaffe—Spencer cluster expansion? is
shown to have a close analog in this setting. The theory
treated corresponds to negatively charged fermions and
positively charged bosons interacting by a modified
Coulomb interaction—the 1/ potential, cutoff at high
and low momenta, becoming (1/#){(e™*" — e™"). For suit-
able values of the parameters the cluster expansion
patterned after Ref. 2 will be shown to converge. We
hope to come back in a later paper to the y == case,
whose treatment should require only technical improve-
ments over the present procedure. The methods of Ref.
3 apply to the interaction treated in the present paper,
but not to the y == situation. We have no definite ideas
on how to treat the physically interesting case with o
=0, y=92°,

A knowledge of Ref. 2 is required to read the present
paper. Space is cut into unit cubes—the greater flexi-
bility of allowing other size cubes is sacrificed to agree
most completely with Ref. 2. Before presenting further
details we point out the following similarities and dif-
ferences to orient the reader.

(a) The potential (1/7)(e™®" - ¢™") is interpolated by
exactly the same procedure as in Ref. 2.

(b) Unlike Ref. 2 we here interpolate Hamiltonians
rather than covariances.

(e) The interaction portion of the Hamiltonian is inter-
polated as indicated in (a). The kinetic energy portion is
interpolated by erecting parameter dependent barriers—
an infinite barrier giving Dirichlet data.

(d) Estimates of integrals of functions on Euclidean
space are replaced by operator estimates from Ref. 1,
characteristic of the semi-Euclidean approach.

We anticipate extension of the present work to more
general interactions, as well as the development of a
cluster expansion for boson—fermion field theory models
within the semi-Euclidean formalism.

1. THE CLUSTER EXPANSION

Space is filled with unit cubes {a;}. Each 4, is of the
form aq; <x;<a;+1, i=1,2,3 for some set of integers
{(m, az, a;). A union of such cubes is said to be intimately
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connected if it remains connected after removal of all
edges and vertices (i.e., contacts must take place
across faces). The set of faces is denoted by {Fi}, the
indexing of 4; and F; being unrelated. If W is a union
of cubes, we define

W={xec W|dx, oW)=> &} (1.1)

for a small parameter 6.

With a given W as above, we associate the Foch
Hilbert space, Hy, constructed of functions vanishing
outside W. Try is the trace over this Hilbert space.
Our interaction will be made up of Yukawa interations
e™™ /7, in the infinite volume. For a union of cubes W
we define yj(x,v), x and y in W, by

(-a+ nz)xy"w(x, v) = (= A+n?) exp(~ n|x -y | Y/ l}v -y |

(1.2)
and
yplx,y)=0 if y c 3W. (1.3)
Note that
Vasle, ) =exp(=n|x=y|)/|x-y]. (1.9

With a union of cubes W, we associate 4, the
Laplacian on functions defined in W satisfying Dirichlet
data on 3W. A is a fixed finite intimately connected
union of cubes. E, Y and 5, ¢ are fields describing
fermions and bosons, respectively. H=H" ig the
Hamiltonian defined on # ,:

HY=H}+ VA, (1.5)
HY= - g8 -5 08,0 + 5T+ 550, (1O
VA=5: (@~ 9o)o - 00 :, (1.7)
v =gP(v§ - V). (1.8)

Integrals have been suppressed. If it is clear, the A
indicators may be omitted. For any union of cubes, W
say, a similar expression HY may be constructed. Using
the notation of Ref. 1, we want to consider an expres-
sion of the form

Tral7T exp(~ [FH @) dDA] (1.9
with A a polynomial in the fields. For simplicity we
will also assume all the fields in A localized in a fixed
cube &g,
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We now proceed to consider the interpolated Hamil-
tonians. A chanracteristic function for a neighborhood
of the face F; is defined as follows:

x ={x|d(x, F,) <8} (1.10)
With each F, is associated a parameter s;, 0<s,<1.
We define

rs)=01/s)=1 (1.11)
so that #(0) = and k(1) =0. The barrier potentials are
given by

Bs:ZBis, (1.12)

B¢s=(@w+$¢)xih(81). (1.13)

v, is v interpolated by the same definition as in Ref.
2. This makes sense since exp(— n»)/» has a Fourier
transform with the same form as a covariance. Thus
we have

VAR =% : (- pO)i (W - ¢0) i (1.14)

Time dependences are introduced as in Ref. 1. Finally

we have the interpolating Hamiltonians:
H(t) = H(2) + V(£) + B,(0).

Note Hy(t) =H(t) if, for alli, s;=1,

(1. 15)

We are now set to define the cluster expansion. For
any union of cubes X define

X=A=-X (1.186)
and Zy by
Zy, = Try[exp(- BHY)]. (1.17)

Our substitute for (3.15) of Ref. 2 is the following:
TralT exp(~ [PHA() dt)A)/Z

:x%)o SO TrylT exp(- [PHE() d)Alds(T) - Zye/Z.

A X

= (1.18)
The notation i. c. means that X must be intimately con-
nected. T', as in Ref. 2, is a subset of the faces in the
interior of X, such that the faces not in I" but in the in-
terior of X do not separate the interior of X. The result
we claim is that for fixed B, m, M, and y- «, if 1 and
a are large enough and g% and 6 are small enough then
(1.18) converges uniformly in the volume A, From this
result follows analogs of all the results in Ref. 2,

2. UNIFORM STABILITY OF THE POTENTIALS

The two-body potential v(x, y) is said to be stable if
for any set of N points {x,}

X

2iv(x;, x;)> - CN (2.1)
i<

for some constant C independent of N and the {x;}. Ap-

plying this definition to our problem, we claim there is
a constant L such that

3 [ Jwdxdy: (Bw~ ¢d) ()% (x, ») @ - $o) () :
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> ~ Lg? fy dx(Pp + o) (x). (2.2)

We say the v¥ are uniformly stable. L is independent of
W, g, and {s;}. In fact, L can be picked equal to

3(y - a). Without loss of generality we set ¢=1 in the
remainder of this section.

For orientation we consider the free case, W=R?
and s;=1, alli. Then v=exp(- alx~yi)/lx =yl
~exp(—¥lx=y1)/lx=y!. There follows

éffdx dy : (0= dp)o (P - 9¢) :
=%_/‘fdxdy@¢- $¢)f%ez exp(ik - x) exp(— ik - ¥)

1 - -
X(EZ__}TEZ —m) (@v-o0)
~4 [ @Y+ 38) )y - @)
> iy a)[dx@ww?w(x). @.3)

We have used the fact that a positively weighted integral
of operators times their conjugates is positive.

In the general case v¥ is constructed as a positively
weighted sum, with total weight one, of {v’s.’f}, in which
the values of the s; are restricted to one and zero. It is
sufficient to prove the result for a single v%. Say the
s; in S equal to zero are those for which i€ /. Let {d),}
be the set of eigenvectors of & in W satisfying Dirichlet
data on oW and F; for icI:

A¢j:— 7\j¢j’

¢;=0 on 3WU{F,|icl. (2.4)
Assume the ¢; are normalized:

Jrdi=1. (2.5)
Then

R ODL I (e S (2.6)
and
3 fpdxdy: (- 60)0i@ - 6¢) :

> -3 fpax(yyp+ acp)v?(x, x) (2.
as in (2.3). There follows

> =% [ dx(@p+ ¢¢) - supvilx, x). (2.8)

We are reduced to estimating v%(x, x):
w_ 4T 47

VT AT R T o+ (2.9)
for the Laplacian satisfying the data in (2.4):

=47 fo”[exp(— a?t) - exp(— B%t)] exp(at) dt (2.10)
So

v¥{x, x) = 4n [ *[exp(~ %) - exp(- B [ dus . dt,

paths (W, s), (2.11)
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where duf,,x is the path space measure constructed for
mass 1/2 and the paths summed over lie in W and avoid
oW and U;z; F;. Clearly this is < the value of the sum
over all paths. So

M, x)<v-a. {2.12)
3. AGRAND CANONICAL ESTIMATE
We define local number operators N;:
Ny= [y, (00 + d0) dx. (3.1)
For a set of integers {a;} we want to estimate
G(a) = Trylexp(- BH{ /2)TIN; Te¥ ], (3.2)

We claim if (W] is the volume of W, and if u is large
enough, there is a ¢; such that
Gla) < (H ai")-exp(cllWI). (3.3)

i

Letting D(z, V, T) be the grand canonical ensemble par-
tition function, we see

D:izNQN(V, T)
0

= (2e®)V Qy(V, T) exp(~ N) exp(~ N) (3.4)
— (2 Qu(V, T) (n exp(- N,~)> exp(=N).
(3. 3) follows from
N*expl- N < ot (3.5)

and D(ze?, V, T) < exp(c, V) for z small enough.

4. CONVERGENCE

Convergence is achieved basically the same way as
in Sec. 10 of Ref. 2. In (10.1) of Ref. 2 one must
estimate

[% Mo x,) expl= AV(M)1do i, ds(D; (.1)

we have been led to consider

[ TrylTA exp(~ [PHI(t)aB)]ds(D). (4.2

To compare the two expressions note:

(a) The A in (4.1) is an arbitrary volume, and the
use of X instead of A would have been clearer.

(b) Our A abbreviates II7¢(x;) (rather an essentially
equivalent expression); in fact, for the sake of conver-
gence we can pick A=1 as this factor enters
unessentially.

(c) The trace substitutes for the Euclidean space in-
tegration [d¢sqr,-

The differentiations 3" are performed in (4. 2) using
(2.2) of Ref. 1. Thereafter, a polynomial in the fields
is downstairs in the trace. We now use (2.3) of [1] to
move the fields according to the following steps.
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Step 1: One at a time move each annihilation field ¢,
¥ to the right [using (3. 2) of Ref. 1 to re-enter at left]
unfil either it contracts with a creation field, or moves
without contracting from =8 to t=£/2, in which case
stop the field at £ =8/2.

Step 2: One at a time move each creation field &, T
to the left until either it contracts (with one of the an-
nihilation fields at t=8/2), or else having passed t=0
just once, stop the field at #=8/2, to the left of all an-
nihilation fields at ¢t =8/2.

At the end of this finite, noninductive, process all the
fields downstairs in the trace are at t=3/2, with cre-
ation fields all to the left of annihilation fields. With a
field that has moved from (xy, #;) to (x,, ¢,) and then con-
tracted (for simplicity without passing {=0) there is
associated

{ dufeiv,

ot (a.3)

With a field ¢ that has moved from x,, #, left to re-
entry at /=0, and then brought to rest at t=48/2 at
(x,, B/2) there is associated

Jaw [ apliy [ aus/2 éx, 8/2). )
These are representative of all possibilities. As in Ref.
2, we localize~—but only the space variables. Thus for
(4. 3) there are two localization indices (j;, j;). That is
Xy € 8y, %€ 8y,. For (4. 4) there are three localization
indices (js, Ja, j3), With x1€ 8;), we by, X3€ 4.

There are now sums (over j's, partitions of [, and
contractions) and integrals (over s’s, x’s, f’s, and path
space), the portion of the integrand we now consider is
of the form

Try (El ﬁa(xnﬁzp@,.)zsz) . (.5)

Here E, and E, are time-ordered exponentials from B/2
to 8 and from O to 8/2 respectively. The ¢'s (¥'s) stand
for ¥’s and ¢’s (¥’s and ¢’s). In doing estimates we will
take absolute values of the integrands, and use

‘Trw (El ﬁi(xi) ﬁ l»b(v;')Ez) [
<5Try (Elﬁpr(xi)E;‘> +5Try (Egﬁ?pzp(yi)@). (4.6)

Of these terms, that can be estimated alike, we con-
sider the first term. All the ¥(x,) in this term have as-
sociated to them, by (4.4), a path space integral

Jau,

From the integrals to be performed we isolate the fol-
lowing portion of present interest:

ey [ 1 (1, 0 [ sl Futea) 2]

4.7

(4.8)
i=1

We have used the key fact, largely motivating our de-

velopment to now, that E; does not depend on the inte-

grals in (4.7). There are ¢, and ¢; such that

sup f duew/iz,x, < Ca exp[_ csd(Ajz‘.: Aia‘.)]‘ (4‘ 9)
wiEAjzi
xiGAisi
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(Exponential falloffs are good enough for us; we sacri-
fice the actual Gaussian falloff.) Using (4.7) from Ref.
1 and (3. 3), we find that (4. 8) is less than

Cg €xp (_ Cy Zi;d(Ajzi’ Afai)) eXp(Cl { W|)I} a‘ix‘ exp(csfl“ l),

(4.10)

where II;0fi is the product over squares 4;, and a; is
the number of j;'s in 4;. By changing the free param-
eters as stated at the end of Sec. 1, ¢; and ¢; can be
made arbitrarily small and ¢; arbitrarily large. ¢, is
not chosen to vary. The factor €¥ in (3.2) and exp(cs|T|)
arise as estimates of the exponent

H) = 3Hy- N +8[0)i(y - a)? (4.11)

using the uniform stability of the interaction. 8] is
an estimate of the maximum number of “particles” add-
ed to the exponent by (2. 3) of Ref. 1. We have kept :H,
in (4, 11) rather than H, to anticipate a development for
more general interactions.

Prop. 5.1, Prop. 5.2, and Prop. 8.1 {for v¥%) are
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the same here as in Ref. 2. The completion of estimates
for convergence are parallel to those in Ref. 2, Sec.

10. There is a mild novelty in the treatment of the bar-
rier potentials.
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Stability of nonlinear parametric-decay interactions in finite
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We prove the existence and uniqueness of a stable steady state of stimulated backscattering from a bounded
homogeneous lossless interaction region, with boundary conditions corresponding to a steady incident pump
wave-mode Poynting flux and zero-flux input to the decay wave modes. In steady state, once the excitation

of the interaction region exceeds a certain critical value, the boundary value problem is characterized by a
finite number of eigenvalues, and associated nontrivial eigenfunctions equilibria of the system,
corresponding to mutually distinct states of anomalous reflection of the pump wave. A stability analysis of
these equilibria with respect to small phase and amplitude perturbations reveals that (i) in the vicinity of
the nonfundamental equilibria the phase perturbations exhibit singularities, preventing phase locking from
occurring, and (ii) in the vicinity of the fundamental equilibrium both the phase and amplitude
perturbations asymptotically vanish. A WKBJ phase-integral stability condition is derived to show that
growing normal modes of the amplitude-perturbation boundary-value problem cannot propagate in the
potential formed by the field of the depleted, spatially inhomogeneous, pump of the fundamental

equilibrium.

I. INTRODUCTION

We will study the process of stimulated backscatter-
ing of radiation from a bounded homogeneous nondissi-
pative plasma, resonant for the parametric decay of an
incident electromagnetic wave, &,, into a backward
electromagnetic wave, &,, and a forward electrostatic
plasma wave, &,. For coherent plane waves,

Eo =E (x, ) explw,! -k, -1, x); 1)
a=1, 2, 3,
interacting at resonance,
w;=w +w,, Kk =k, +k;, 2)

the slow space-time modulations E, (x, f) due to cou-
pling of the electric field amplitudes and phases are
described, to lowest nonlinear order, by the system of

coupled equations, i~

2E oF

#_F?)lﬁ:—MlEzEw (32)
3EX QEX

‘#‘H"z ??xz =M,E}E,, (3b)
JEY} JE¥

8[3 +w3—ax—3:M3E1*E2. (3c)

Here, the positive x direction is oriented along k,,
which is parallel to k, but antiparallel to k,. Thus, for
the wave group velocities, »,, determined by the re-
spective mode dispersion relations, we have », >0,

v, <0, n;>0. The M, are positive coupling coefficients.
Their explicit form for stimulated Raman and Brillouin
backscattering are presented, for example, in Refs.
5—8. The plasma is bounded between x =0 and x =1L,
with free space elsewhere. At the boundaries we re-
quire E, real,

E,(0,/)=E >0, E40,1)=0, (4)
and we specify

EZ(L,I):(), (5)
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in order to eliminate convective backward amplification
of nonzero background thermal noise.”

The given two-point boundary value problem has been
studied analytically as well as numerically by several
authors, using various approximations. Linear theory
is due to Bobroff and Haus® who, assuming a constant
pump wave-amplitude, E, =E,,, predict absolute in-
stability of the decay waves E, ; when the gain of the
interaction region exceeds a certain threshold. Namely,
when

Eyo LM, My/ [0, 05| H/2=T > n/2. ()]

Manheimer” shows that this threshold is identical with
that for steady reflection, as described by nonlinear
theory.

The nonlinear case has been studied analytically in
steady state by Andersson and Wilhelmsson, ® and
Andersson, ® who shows that the boundary value problem
leads to a countable spectrum of eigenvalues and asso-
ciated steady eigenfunctions. The analysis is then con-
tinued to obtain a reflection coefficient, under the
assumption that there is no way to single out one of the
eigenfunctions as the unique steady-state solution. As
a consequence, the reflection coefficient is then defined
as a mean over a certain distribution of eigenvalues.
The transient numerical analysis of Harvey and
Schmidt!® presents a different picture of the interaction.
First, the solution evolves in time towards an aperiodic
monotonic structure in space, independent of the initial
conditions. Second, surprisingly enough, even when the
amplitudes were placed initially into one of the available
periodic steady eigenfunctions, they again evolved to-
wards the aperiodic steady solution. Since amongst the
steady eigenfunctions there is just one which is aperiod-
ic, the authors concluded that it is just that which rep-
resents uniquely the steady state. Finally, to further
support this conclusion, the equations were linearized
around the eigenfunctions and noise was added. In the
aperiodic case the noise subsided, whereas in the
periodic one the perturbations grew.
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The results of Harvey and Schmidt indicate that the
actual, physically observable, state of anomalous re-
flection is represented by the fundamental, aperiodic,
equilibrium. In the present study we therefore, propose
to support this assertion analytically, by analyzing the
stability of the spatial equilibria of system (3) with
respect to phase and amplitude perturbations. The re-
sult is that the fundamental equilibrium is asymptotical-
ly stable, whereas the nonfundamental equilibria are
unstable. In Sec. II, we describe the equilibria. In Sec.
III, we clarify the concept of stability to be applied, and
we show that phase perturbations are not coupled to the
amplitude perturbations. The analysis of phase-pertur-
bations, in Sec. IV, shows that in the vicinity of the
nonfundamental equilibria the wave phases cannot lock,
In Sec. V, we derive a WKBJ phase-integral stability
condition to show that the amplitude-perturbations sub-
side in the vicinity of the fundamental equilibrium.

Il. STEADY STATE SOLUTIONS

In this section we present, for further reference, the
steady state solutions of Eqs. (3). Writing E,
=A, expd,, with E, and &, real, Egs. (3) become

A, +v AL =0 ,MAA, cosd, (7)
G, +0,8, =M, (A,A,/A,)sind, (8)

(Q’ B, -y):(l, 2, 3) cycel.,

where ( )*=23/at, ( )'=3/9x, 0,=-1, 0,=0,=1, and
® =&, +d,-d,. We now assume { )*=0, rename 4, by
S, to distinguish between the transient and steady state
amplitudes, and introduce the normalizations

Uy :Sa(MBMr/l”Bvr“I/z‘ (9)
We obtain, with s, =s,=-1and s,=1,
Uy =S, Ugth, cOSP, &, =—(ugu,/u,)sind. (10)

The solution of Eqs. (10), subject to conditions (4) and
(5), is

&, =0, (11)
=t dn(g, k), w,=unen(E, k), wus=1,sn(E, k), (12)
with

E=uoX, k=uy/u,.

The modulus % of the Jacobian elliptic solutions is seen
to be equal to the (transverse action) reflectivity of the
slab, and is given by boundary condition (5), that is,

ca(T, £)=0, T=u,lL. (13)
Equation (13) is only satisfied when
T'=Q2n+1)K(k,), (14)

where K(k,), the quarter period of the Jacobian elliptic
functions, is equal to the complete elliptic integral of
the first kind. Since K(k) increases monotonically from
7/2 to w0, as k runs from 0 to 1, we see that if T" <7/2,
then #=0. If, on the other hand, T > 7/2, there exist
unique solutions k, of Eq. (14) such that

1>ky >Ry >eee >k, >0, (15)
where 2N -1 = highest odd integer part of (2T /7).
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The fundamental solution «.°’, associated with k&g,
consists of one quarter period of the Jacobian functions.

Remark: The fundamental mode is the only eigenfunc-
tion which is defined and is continuous for all T € (0, ),
We recall that for T" € (0, #7/2) the solution is trivial.
For I >7/2, as I'— « and 2— 1, the fundamental mode
evolves continuously into

#y ,— Uy, Sechux, sy —u,tanhux, (16)

which is the unique solution of the boundary value prob-
lem for a semi-infinite plasma, L — «.

i1l. STABILITY—BASIC CONSIDERATIONS

A number of stability concepts developed for an
autonomous system of ordinary differential equations,

Yo=F, (Y, Y,...,Y), m=1,...,n, th))

can be transferred directly to the (hyperbolic) system
of first-order partial differential equations (7) and (8).
Let us therefore recall'**'? that the stability of system
(17) is related to the stability of its singular points

I.’m =0, given by F,,=0.

In the following, we will analyze the stability of sys-
tems (7) and (8) in the spirit of Lyapunov’s first method,
that is, we study the linearized equations in the vicinity
of the equilibria A’a =&, 0. Let us first denote the
equilibrium solutions of (7) and (8) by Y\, m =1,...,
6, n=0,..., N-1, with N given by Eq. (15). The
vector Y, is defined as

Y,=A,,%,), m=1,...,6, a=1, 2, 3. (18)
Correspondingly,
Y'(nn):(sgtn), 0), (19)

the solutions being given by (11), and (12) complemented
by (9). Then, in terms of y,, a variable measured from

equilibrium,
ym:Ym_Yr(n")i m:l,..., 6, (20)

the variational equations corresponding to (7) and (8),
that is, to

Vo 40, Y= Yy, ..., Yy, (21)
are (in matrix form),
¥ +By' =J"y. (22)

Here, J'" is the Jacobian matrix,

I =3 A M (23)
and

B=diag(V,V), V=diag(v,,u,,). (24)
The matrix J is quasidiagonal,

J=diag(J,, J,), (25)
where

0 -MS, -MS,
J,=\M,S, 0 M,S, (26)
M,S, M,S, 0
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and
c, -C, -C,
Jo=|C, ~C, =-C,1{, 27)
C, -C, -C,
with
C,=M(5:S,/S,), o, 8, y=(1, 2, 3) cycl. (28)

We thus obtain the important result that in the vicinity
of the equilibria the amplitude variations are not coupled
to the phase variations. Namely, with

Yu={ay, by)y m=1,...,6, a=1,2, 3, (29)
Equation (22) becomes

a+va'=Ja, (30a)

¢ +Vo'=Jd,9, (30b)
subject to the boundary conditions,

al,S(O,t):aZ(L,/):O, (31a)

¢)1,3(0’[): boAL,1)=0, (31b)

and to arbitrary, but not all identically vanishing, ini-
tial conditions consistent with (31), that is,

lims, ox,0)= jl{i"r?az(X, 0)=0, (32a)
}cirg1¢l’3(x,O):Iir?q)z(x,O):O. {32b)

The variational Egs. (30) represent a significant
simplification with respect to the nonlinear system of
Egs. (7) and (8), solely because of the decoupling of the
a, from the ¢,. Otherwise, since J is a function of «,
exact integration is still not possible. Furthermore,
general stability criteria for hyperbolic systems, to the
best of our knowledge, have not as yet been developed,
except for the case of identical characteristics
(v, =»,=1n,) treated by Zubov.'® Consequently, we have
to resort to approximations. In this respect, it is useful
to realize that since the interaction region is finite,
with no excitation at the boundaries and initial conditions
identically zero outside <0, L), asymptotic stability is
guaranteed whenever the perturbations remain bounded
at all times, that is when the systems (30) are not abso-
lutely unstable, and do not possess singular solutions.
Then, namely, since the systems (30) are linear hyper-
bolic, the response to an initial perturbation eventually
propagates out of the interaction region.

IV. PHASE-LOCKING

In the vicinity of nonfundamental modes, S\, » >0,
the hyperbolic system (30b),

o

Go F0, 0L =My (S5:S,/S)p=~Cu0,
a, B, 'V:(15 2, 3) cyel, D=, + by~ by,

cannot have continuous bounded solutions™ inside x
€(0, L), since the coefficients C, are discontinuous and
singular inside the interaction region. The easiest way
how to demonstrate the singularity of the solutions is
to solve the Cauchy problem’ in the absence of non-
diagonal terms in J,. We obtain

(33)
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Go (%, 1) = go(x = 141) S (x)/Se(x = v,1), (34)
where
b,(x,00#0, xe(0,L),

g, (%)= (35)

0 , elsewhere.

We now consider the fundamental mode. We Laplace-
transform (33), integrate with respect to x, and apply
the boundary conditions (31b). We obtain

Bustin =i [Tem(-5Er-0)

x[[’gl,s(g) - 6(57[7)(:1,3(2) lde,

(36a)
_ L
suxp= i [ e (-2 - o) - Be) cola.

(36b)

The functions C,(x) are now definite in sign and bounded
inside (0, L), so that the integrals (36a) and (36b) are
guaranteed to exist. The inverse Laplace-transforms
of aa therefore also exist and we may interchange the
order of integration. It follows that:
1
(p],S(x’ 0 :gl,s(x —v5l) - P

’1,3

><fxfp(/— o ,s)cl,g(s)ds, (37a)
o] 1,3
Ou(x, ) =g(x=v,4) + j—
L .
xf ¢(z- - ,g)cz(smg. (37b)

On the other hand, we have for ¢ =¢, +d, ~ ¢, as
follows from (33):

¢+ QNP = — 1,0 — 130+, 0, (38)

Ui,

QUX)=C,+C3-C, = (39)

tg Vs 14:;432 Ml =16),
with the #, given by (12). For the fundamental mode,
Q(x) is positive definite on (0, L). It follows that ¢ is
not a growing mode, and neither are the ¢, as given by
(37). Therefore, there exists a time asymptotic solu-
tion, and it is easily obtained as follows. Let (> L/
in,!. Then g,(x-»,{)=0, since the argument falls into
a region where originally ¢, (x) vanishes identically, and
the temporal argument of & under the integral sign in
(37) becomes just /. Thus,

(péas)':_ i (b(as)ca(x). (40)

P2l
4

The only solution of (40), satisfying the boundary condi-
tions (31b) is,

»*95.5,8,=0, (41)
so that finally ¢‘* =0. We conclude that in the vicinity
of the fundamental mode the phases relock.

V. AMPLITUDE PERTURBATIONS

Since the instability of the nonfundamental equilibria
already follows from the behavior of phase perturba-
tions, it remains to be shown that the amplitude pertur-
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bations are stable in the vicinity of the fundamental
mode. In what follows, we establish a sufficient condi-
tion for the stability of system (30a), in terms of a
WKBJ phase-integral stability criterion for the decay
wave perturbations a, and a;. This procedure enables
us to ascertain that the nonlinearly depleted pump wave
S,, appearing in Egs. (30a) as the background driving
field of the decay wave-perturbations, cannot sustain
growing modes.

Let us first note that a rigorous stability analysis of
the system (30a),

a, +va) ==~ M,Ssa, = M S,a;, (42a)
a, +v,a,=M,Sia;, +M,Sa,, (42b)
G, +v,a5=M,S,a, +M;S,a,, (42¢)

cannot be carried out in closed analytical form. A suffi-
cient stability condition can, however, be obtained if

we notice that, due to the absence of diagonal terms in
J,, stability is guaranteed if pairwise coupling of the
equations is stable. Let us consider, for example, the
coupling of the decay wave-amplitude perturbations a,
and a,. From the point of view of the respective Eqgs.
(42b) and (42c), a, appears as a source term, which,

as is clear from (42a), is not a growing mode if 4, and
a, are not growing modes. Thus, in the first iteration,
if we establish stability of the system (42b) and (42c) in
the absence of the source, subsequent iterations will not
lead to growing modes. Consequently, a sufficient and
necessary condition for the stability of the system,

Yo+ g =M, A, fx) vs, (43a)
V3 F Uy Vi =M A L f(x) v, (43b)
vl L, 1) =140, =0, (44a)
Ax)=dnlux, k), K(k)=u,lL, (44b)

is a sufficient condition for the stability of the system
(42).

To prove that the system (43) admits as solutions
only temporally decaying modes, we first have to find
the dispersion relation for the normal modes of the
system. Let us therefore Laplace-transform (43),
neglecting initial conditions, eliminate y,, and substitute

Vslx,p) = ZVF exp [_127_(1_ + —1—->x]- (45)
7)2 1)3
We obtain
Z" +k,Z=0, (46)

k3%, p) =1y f2+3(Inf)" = 3(f /f +ap)?,
with

ufo = ‘AfoMzMs/Uzvs, a=1/v;-1/v,.
We now subject the WKBJ solutions of (46) to the bound-
ary conditions (44). The requirement Rep <0, then
entails a stability threshold condition. To simplify the
analysis, we will look for solutions with p real, in the

vieinity of p =0. The construction of the WKBJ solutions
of (46) in the vicinity of p =0 depends on the degree, %,
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of pump depletion, as given by (44b). This is seen as
follows: The function k = k,(x, 0) is

Kk =5u3(3dn® =1 = &2 +3k’/dn®) = Julo0, (47)

with £’ =(1 — £*)'/? the complementary modulus. The
function ¥, defined on £ (0, K) and k’'< (0,1), has the
following properties:

(1) ¥ is even with respect to £=K/2. For k' =1,
(¢, k’)=4. When #' <1, ¥ has a minimum at
t=K/2, equal to ¢,,=6k' =1 ~£k'%, Thus:

(2) When &’ >k/=3 -8, then ¢ >0. When &’ <k/,
¥(£) has two zeros, which we denote by #(a)
=y(»)=0, a <b. Clearly, a +b=K. The function
(&) is shown in Fig. 1.

Therefore,

(i) when 2’ >k, the boundary conditions can be
directly applied to the WKBJ solution'*

Z=ut[A exp(i2,) + B exp(- iQp)], (48)
where
2,(0, x) = fox Ky ?(xq, p) dixy. (49)

(ii) when pump depletion is strong, k' <k., Eq. (46)
has two turning points and we must apply con-
nection techniques.

Let us first consider case (i). Applying the boundary
condijtions (44a) to (45), with Z given by (48), and mak-
ing use of the fact that /(L) =0, we obtain the dispersion
relation

s[pa - 3(lnk;); ] sin® (0, L) +(kL/?), cosQ,(0,L) =0, (50)
with ©,(0, L) given by (49). More explicitly,

(9/2)R(¢) sin®,(0, L) +S(q) cosQ,(0,L) =0, (51)
with ¢ = ap and

R(q) =ufy ~uls /4 - q°/4, (52a)

Sq) = (uly —uio k*/2 = q*/4)°/%. (52b)

It follows from (51) that when ¢ =0, then

6k -1-k'¢

FIG. 1. The null-growth (p =0) potential ¥ (¢, %), as given by
Eq. (47), for the propagation of the decay wave-amplitude
perturbations in the field of the spatially inhomogeneous pump-
wave Eq. (@4b). For weaker reflection (or pump depletion),
specifically when &’ > k. =3 —v8B, ¥ is positive-definite. A small
negative growth rate shifts the potential downwards.
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U0, LY=9,,(0,L)=@n-1)7/2, n=1, 2, ..

Let us first establish bounds for Q(0,L), to show that
the threshold excitation is just 7/2. The function ,
defined by (47), satisfies the inequality

W/4< p<2dn? +2k%/dn?,

so that further,
$/2< 3 2< 3 (dn +k'/dn).

Upon integration over (0,L), we obtain
[6E(k) - (1 +27%) K(k)]/4 < Q(0,L) <7/V3,

where E{k) is the complete elliptic integral of the sec-
ond kind. Thus,

0.74 <Q(0,L) <n/V2 (53)

for all £’ >k.. We note that the bounds (53) for Q(0, L)
are established very conservatively, since they are
derived from inequalities valid locally. The phase-
integral ©(0, L) thus lies in the neighborhood of 7/2 and,
due to the continuity of the functions S(g), R(g) and @,
the only acceptable solutions, ¢,, of Eq. (51), are those
which lie in the vicinity of ¢ =0, corresponding to values
of (0, L) in the vicinity of 7/2. Now, we obtain the
stability threshold condition as follows. Writing

Q, =0 +{dQ,/dg)qg =R +Dq,

we define an implicit function of ¢ and €, given by (51).
Thus,

Adq -
aQ ~ LR(0) = DS(0)

=0, Q=1/2
This expression can be shown to be always positive
{Appendix A), so that finally g <0 if and only if

Q0,L) <n/2, (54)

We now turn to the case (ii) 2’ <k). Equation (46) now
has two turning points, which we denote g, and b,
corresponding, respectively, to the zeros ¥(a) and (b),
as shown on Fig. 1. The regions 1=(0,q,) and II1=(b,, L)
are “wells” and II= (a,, b,) is a barrier. Proceeding by
standard techniques, ™* we join together the WKBJ
approximations in regions I and III through o, and b,
and apply the boundary conditions (44a). We obtain, in
analogy with Eq. (51),

LgR{g) (D, siny - D,) +D,Slg) cosy =0, {55)
where

7/2=9,0,a,)=9,(b,, L), (56)

D, ,=exp(~s)/4+exps, (57)

S:J;bq(—-Ks)l/zd.’(. (58)

Since D, >0 and D, <0, it is easy to show, similarly as
in case (i), that ¢ <0 if and only if

20(0,a) <7/2, (59)
This concludes the first part of the stability analysis.

It remains to be shown that conditions (54) and (59)
are indeed satisfied. Since the condition (59) is more
easily satisfied than is (54), it suffices to prove the
latter, that is,
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Q(k):%fof“’“zp”z(g,k)dgs /2, (60)

with given by (47). To start with, when 2 =0, then
p=4, and Q(k)=K(0)=7/2. This is seen to be the sta-
bility threshold condition (6) for the constant pump
approximation. Now let 2 > 0. Making use of Schwarz’s
inequality,

L[ raaxlP<[f reax] [[°g*ax],
we obtain, with f=4'/?and g=1,

Q) <3{K(R) [T kdx]'/2= Ik). (61)
The integral k), evaluated as

KR)=3K'2[6E — (1 +k'))K['/?, (62)

decreases on the interval k¢ <0,k.}, and 0)=n/2.
This concludes the analysis.

V1. CONCLUDING REMARKS

From a linear point of view, the asymptotic stability
of the fundamental mode guarantees that the transient
solution of the system will approach this equilibrium
from any given initial state. This, unfortunately, is not
necessarily true for a nonlinear system. However,
inasmuch as we can rely on physical intuition, the ini-
tial conditions for the decay interaction should lie in the
region of attraction of the fundamental mode. Namely,
let T >7/2 with an initially uniform pump and zero
decay wave-amplitudes. Since at these conditions the
decay-waves are driven absolutely unstable, they will
grow within the entire extent of the interaction region
but not uniformly, since the boundary conditions define
the electrostatic wave at the front edge of the slab, and
the backscattered electromagnetic wave at the back
edge of the slab. Thus, the decay waves will build up in
the directions, respectively, of their group velocities.
In turn, transverse action conservation requires the
pump-wave tc be depleted in the direction of its propa-
gation. The transient response thus evolves towards the
fundamental mode.

There is no doubt that the steady state is accessible
in the case of weak excitation, when the fundamental
mode lies in the vicinity of the initial conditions. How-
ever, the perturbation method applied in this study to
analyze the stability in the small of the equilibria is
inadequate to provide any information pertaining to the
behavior of the system initially far from equilibrium.

A more profound understanding of the interaction, based
on Lyapunov’s direct method, is therefore required.
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APPENDIX
We will prove that if 2’ > %, =3 = Vg, then
1R(0) = DS(0) >0, (A1)
where R(0) and S(0) are given by (52a) and (52b)
respectively, and
V. Fuchs and G. Beaudry 212



D= ‘_Z.QQ_(O.’_Iil . (A]_)
dq a=0

Let us first calculate D. We have, with given by
(49),

D:_HOL K3 (n f) dx, (A3)
and with « given by (47),
1 ! 1+572 -1/2
D=g——rie 2R df. A4
TS f (- T e

When (1 +%’%}/3 <2k’, which is just equivalent to the
assumption 4’ > &/, the elliptic integral (A4) is equal

tols
D=[(8%")*?/2u, |[K(k) ~ F(a,, k)], (A5)

where F is the incomplete elliptic integral of the first
kind, with

a,=arccos[(l —=£")/(1 +&’)], E*=(6k"=1-=k"%)/12,
(AB)

We can now prove (Al). We first estimate'® that when
k' >k/, then K(k) - F(a,, %) <1. Therefore,

D <(3k')2/2u,,2 H/u,,, (A7)
and consequently
LR(0) —=DS(0) > L R(0) — HS(0) /. (A8)

But
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R(0) = 2H S(0) /u,, >u2,[1 = 2H(1 = k2/2)1/2] >0,  (A9)

since the inequality 1 —4H?*(1 - 2%/2) >0, is equivalent to
the assumption 2’ >%/. This completes the proof.
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Variational and reciprocity principles of the Gurtin type are established for the initial-boundary value

problem associated with wave propagation in a superfluid.

1. INTRODUCTION

Variational and reciprocity principles of the Gurtin
type have been obtained by several authors!~* for the
linear initial-boundary value problems associated with
the classical wave equation. These properties have also
been derived for the initial-boundary value problems
which arise in other areas of mathematical physics
such as those in which the governing equation is the
Schrddinger® or Klein—~Gordon® equation. The results
obtained for the classical wave equation in Refs. 1—4
are applicable to the acoustic problem for an inviscid
gas. However, at low temperatures quantum effects be-
come important and the gas exhibits superfluidity prop-
erties. It then becomes necessary to employ two equa-
tions to characterize the wave motion.

It is the purpose of this paper to establish variational
and reciprocity principles for the linear initial-boundary
value problem associated with superfluid acoustics.

2. FORMULATION OF INITIAL-BOUNDARY VALUE
PROBLEM

The propagation of sound in a superfluid is governed
by the equations®

ng .

azh - Ap~ B _f(x 1), (x,t) e Dx(0,=) (2.1)
and

az 22

v S - AT - “atg =glx,8), (x,)€Dx(0,), (2.2)

where p and T represent the small changes in pressure
and temperature from their constant equilibrium values.
The coefficients «, B, ¥, i are the constant equilibrium
quantities (3p,/a3p,) r; [(p)o/ (pIS21BS/ 3T, , — (Bpo/
aT,), » = [0,)o/ (0)eS*3Sy/ 9py)y , Where p,= p +p, and
(pn)o, (ps)o, Sy, Ty, po are the equilibrium values of
normal density, superfluid density, entropy, tempera-
ture, and pressure. The possible effects of sources are
accounted for by the prescribed functions flx, ) and

glx, 0.

The quantities p and T are functions of position x
=(x,, %5, - - - %,) and time ¢ defined on Dx[0,»), where
D is a bounded n-dimensional domain in the Euclidean
space R" with closure D and a boundary aD which con-
sists of the disjoint union of two (n - 1)-dimensional
domains 8D, and 3D,. The outward normal to 3D is de-~
noted by v and the n-dimensional gradient and Laplacian
operators are denoted by V and A, respectively. In what
follows we will employ well-behaved real-valued func-
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tions defined on Dx[0,%), and we will assume that 2D
is sufficiently smooth to justify all mathematical opera-
tions throughout the analysis.

To complete the formulation of the initial-boundary
value problem, we impose the following initial and
boundary conditions on p and T:

plx,0)=f(x), Tlx,00=rx), x&D, (2.3)
—%&* & (x), -a—T%Cf(ﬁ:gz(x), xeD, (2.4)
Pl =hy(x, ), (x,)€ 2D x(0,), (2.5)
T(x,t)=hylx,t), (x,8) c2aD,x(0,), (2.6)
%§+k7_,h(x A, (x,)€aD,x(0,=), @.7

where f;,g;, i=1,2, h;, j=1,2,3, are prescribed and
k (= 0) is a prescribed function of x.
3. VARIATIONAL PRINCIPLES

It is not difficult to show that Eqgs. (2.1)—(2.4) are
equivalent to the pair of integro—differential equations

ap~*Aap - PT=F, (x,0)eDx(0,«), (3.1)
yT = t*AT - up=G, (x,0)eDx(0,»), (3.2)

where the convolution of any two functions v{x,t), nlx, )
is defined in the usual way by

*olx, 1) = ft vix, t)wlx, t - ) dt,, (3.3)
and ’
F(x,t) = t*flx, 1) + aftg,(x) + f1(x)] - Aigo(x) + folx)], (3.4)
Glx, ) =t glx, 1) ~ pltg, (%) + 0]+ Aig{x) + /(). (3.5)

We introduce the functional &,(p, T) defined on some
function space L by

4>t<p,T):j ul3(ap*p + xVp* - Vp)~ p* T - F*pldr
D
+f HL(yT* T+ VT "VT) - G*T)dT
D

—f ME¥(p — Ry
aD

% do - Kit*(T—hz)*isz
v D v

+J LER (T — 2R, 0* Tdo, te[0,=), (3.6)
aD g

where, for any two functions v(x,#) and w(x, ),
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dv* dw
Vo* eV = Z —_— .
i=1 31({ 3)(

A variational principle can now be stated in the form

6&,(p,TV=0 on L, tc(0,x), (3.7

for a particular pair of functions (p,T) if and only if
{p,T) is a solution of the initial-boundary value problem
2.1)—(2.7).

Proof: By proceeding in the usual manner of the varia-
tional calculus and using the divergence theorem we find

60 ,(p,T ,uj (ap —t*Ap - BT - F)*&pdT
D

+ﬁJ’ (YT — AT — up — GV 8T dt
0
—MLDt*(p—hl)*ﬁ(Gp)do
_Bf (T = ) 2 (6T) do
dv

+ﬁf (—+kT h) 6T do, tc[0,).
(3.8)

If (p,7T) satisfies the initial-boundary value problem,
then (3.7) holds. Conversely, if (3.7) holds, then,
setting 6p£0 on Dx[0,), 6T £ 0 on DX[0,),(3/3v)(5p)
=0on aDx[0,«), (3/2v)(6T)=0 on 3D, x[0,x), and 67T
=0 on 2D, x[0,«), we obtain

[O,oo),

[ (ap —txAp - BT - F)*6pd7=0, tc (3.9)
D

so that by the fundamental theorem of the variational
calculus® Eq. (3.1) follows. Similarly Eq (3.2) can be
obtained by choosing 67T #0 on D %[0, (3/3v)(6p)=0
on 2D x[0,%), (3/2v)(6T)=0 on aD, X[O,w), and 67=0
on 3D, %[0,=), and again appealing to the fundamental
theorem of the variational calculus. Also by the ap-
propriate choice of (3/2v)(8p), (3/2v)N8T) and 6T on 2D
x[0,%) we can obtain the boundary conditions (2.5)—
(2.7) and the proof is complete. We remark that all the
boundary and initial conditions are natural for this
variational principle.

It has been shown recently® that variational principles
of the Gurtin type can be simplified by reducing the
number of convolutions used in the construction of the
appropriate functional. For the problem under investiga-
tion in this paper we can accomplish this by introducing
the functional x(p,T), where

*x,=® (3.10)
Since 6®,=0 if and only if 6x,=0, the variational princi-
ple (3.7) can be stated in the same form as in (3.7) with
@, replaced by y,.

To obtain y,, we differentiate (3. 6) twice with re-
spect to ¢ and find
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xt(p’ T)
- j i (3lap*h + 20p(x, 0px, )+ Vp* = Ip]
'D

—BLp0x, 0T (e, 1)+ T(x, 0plx, 1) ~ p* T
— F*p - plx,00F(x, ) - Flx,0)p(x, )} dT
+ [B{%[ﬁ* T* + 2¥T(x, 0)T(x, 1) + VT* * VT]

~ G*T - Glx, 0)T(x, 1) ~ T(x,00G(x, )} d7

0 oT
-[ u(p—hl)*a—f;do—f AT -y 2o do
D D,

+f LGP (T - 2h) do, 1e(0,), (3.11)
D,

where the dot denotes differentiation with respect to

time.

4. RECIPROCITY PRINCIPLES

We can set p=1I1+¢ and 7= 6+ u, where the functions
II and ¢ satisfy the equations

2 2
aa__f;_An_@izi:o, {(x,8) € Dx(0,%°), (4.1)

at ot

826 ER
at —AfG-u T =0, (x,1)eDx(0,»), (4.2)

together with the conditions (2.3)—(2.7) and the functions
g and u satisfy the initial-boundary value problem

2
agg —Ag- Bag —flx,8), (x,) €Dx(0,%), (4.3)
2%u 8%q
vaE = u= o =glo 0, (v, €Dx(0,%), (4.4)
q(x,0)=ulx,0)=0, xe].;, (4.5)
9q(x,0) dulx,0) —
= = & .6

T 5 0, xeD, (4.6)
qle,ty=0, (x,)€aDx(0,x), (4.7)
ulx,8)=0, (x,1)eaD,x(0,=), (4.8)
ou
a—;+ku:0, (x,1) € 2D, x (0, =), 4.9)

The solution of the initial-boundary value problem for
g and u is unique’ so that if (g;,u;) is the solution of
equations (4.3)—(4.9) associated with the source pair
(f;»&;), i=1,2, then a reciprocity principle can be
stated in the form

L(ufl*qz_"ﬁgl*uz)dT:f (ufz*(11+l3g2*u1)d7.
D

Moreover, in the special cases f,=0, g,#0, i=1,2 or

(4.10)

f,#0, g,=0, i=1,2, the reciprocity principle reduces
to the form

J fira.dr= [ f*qidr (4.11)
or

ngl*usz:[)gz*uldT. (4.12)

These latter statements of the reciprocity principle are
similar to those associated with the classical wave
equation. -3
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To prove (4.10), we use the pair of integro—differen-
tial equations equivalent to (4. 3)—(4.6) which have the
form

ag - t*Ag - Bu=1*f, {x,)<(0,=), (4.13)

and

Yu - A~ pg=rg, (x,8)ec(0,°). (4.14)

We have

J (hagi*ay = pt*Aqi*qy - mbu*gr) dT= [ ut*fi*qdr,
(4.15)

fD (hagr*q, — k¥ Agy* gy — 1Puy*q,) dT= fD nEfr*q, dT.
(4.16)

Subtracting (4.15) from (4. 16) and using the divergence
theorem together with the boundary condition (4.7), we
find

f wBu*g, —u*q) dr= fD ut*(f*q, = fi*g.) dT. (4.17)
D
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Similarly, by using (4.14), we obtain
f wBu*qy ~u*q,) d7= fD B (g *u, — g *u,) dt. (4.18)
D

By differentiating Eqs. (4.17) and (4. 18) twice with
respect to # and adding, we obtain (4.10), and the re-
ciprocity principle is established.
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A geometric formulation of the Taylor theorem for curves

in affine manifolds*
Stanisfaw L. Bazafiski

Institute of Theoretical Physics, Warsaw University, Warsaw, Poland

(Received 14 July 1975)

The paper contains a theorem from differential geometry which exhibits the geometrical content of the
classical Taylor expansion theorem applied to curves in a differentiable manifold. It also presents a review
of a slightly modified version of the calculus of affine extensions, necessary for the proof of the theorem.

1. FORMULATION OF THE THEOREM

In certain applications of differential geometry to
general relativity one meets Taylor expansions of the
form

vt (32) oo (),

(1.1)

where x*(7) (=1, . ,n) are coordinates of a point p
= ¥(7) on an analytic curve 7, parametrized with 7 be-
longing to a certain interval JCIR, in an n-dimensional
differentiable manifold /. The subscript 0 in (1.1) de-
notes that the coefficients are evaluated at the point ¢

= UT,), i.e., for 7=17, A particular example of such a
situation will be given in a subsequent paper on the con-
cept of generalized geodesic deviations and their dynam-
ical meaning in the theory of general relativity.

In general the coefficients of (17— 7,)% in (1.1), (d*x%/
dT), for a=1, .,n, are not components of any
geometric object at the point ¢g. This is inconvenient for
some applications of the expansion (1. 1) despite the
fact that all coefficients up to the kth taken together are
components of an inhomogeneous geometric object—
the &-jet jfy. The purpose of this paper is to reformulate
the Taylor theorem in a form which exhibits its geo-
metric content and removes the above mentioned incon-
venience. Its essential result is expressed in the fol-
lowing theorem:

Theorem: Let y: R~ QCA_be an analytic curve in an
open region £ of an n-dimensional differentiable mani-
fold 4, endowed with a symmetric affine connection,
analytic in €. Then in the tangent space T, at a point ¢
= ¥(7,) € Q there exists a vector curve {: R — T, defined
by

1
T»—~Z(T):l(q)+§!—<%>q (T=7)+ -

1 C &3
T (ﬁ) (7

— where (3%t/d™), e T, (k=1,2,---) is the absolute

kth affine extension along ¥ at the point 4 of the vector

¢ tangent to ¥ and the series (1.2) is convergent for 7,7,
< ICR—such that the exponential map

To)F+ oo (1.2)

(1.3)

maps the vectors (7~ 7,)l(7) € T, into points ¥(7) of the
curve 7Y for 7,7, belonging to a certain interval I’ CI.

exp (T — 7)) = ¥(7)
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Remark 1: The concept of the absolute affine exten-
sion of a geometric object was introduced to differential
geometry by O. Veblen and T.Y. Thomas.!? A short
review of definitions and properties concerning this con-
cept will be given in Sec. 2 of this article. The coeffi-
cients of the series (1.2) may also be defined by induc-
tion as vectors with the following components in the
natural frame corresponding to coordinates x* («
=1,...,n):

Ht"‘ _ Dt
For k=1: 7= ar

(D/ dT—absolute derivative along ¥): for & =m:

g D BY I (m j- 1)
dr —dm ',~=o
grm-i-i-1 qt (Diy
X g i i "“)dT’ (d'rf tu> ’ (1.4)
where
HTI“C{
X Cen_ Y
dr _{i.j.h....,k) ijh".kN:“o‘l"'o’iBl'"Bj""‘l""‘ktal i
g5 g5 Tl gt
X —_ e’ cee
ar ar T dat (1.5)
with
o .:<_1_)" (i) N
RO 2! 3! ! QFthl oo ekl
and N7, k, being the components of normal tensors

(cf. Ref .1 3 and Sec. 2) which are known functions of the
curvature tensor and its covariant derivatives. The
summation above runs over all the sets {i,,k, . . . ,k}
of nonnegative integer solutions of the equation

i+2+ 3+t lk=7.

From (1.4) and (1.5) a few first coefficients in (1.2)
may be found as

qt*  Di°

dr ~ dr

g L(OL _D ta

T

T D¢ D¢+

a7 “ar Tl b

g‘ita kD4ta 7 D2 . 3Dt‘° Ditv v\ ge +g
dr —ar 3 a7 ar ar ') B
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v
XR* fad e Dy

pPHVYO dT ta' (1'6)

Remark 2: Readers not familiar with the concept of
the exponential map may treat (1.3) as a shorthand way
of saying that the geodesic T';, which for 7= 7, passes
through the point ¢ and for which its tangent vector at
g (i.e, for 7=17,) is equal to I(7) will intersect the curve
v at the point p with coordinates x*(7) for the value 7 of
the affine parameter along T',. If;‘ln is additionally en-
dowed with a Riemannian (or pseudo-Riemannian) struc-
ture, it means the geodesic distance between ¢ and p
along T, is equal to (g, l%F°) /(1 - 7.).

The proof of the theorem will follow in Sec. 3.

2. THE AFFINE EXTENSION OF A GEOMETRIC
OBJECT

In the proof of the theorem formulated above, certain
properties of the notion of the affine extension, in-
troduced to differential geometry some fifty years
ago,!*? will occur. Nowadays, however, they are not
widely known and will, for reference purposes, be here
shortly reviewed, leaving aside the rather simple
proofs which may be found in the literature.®s* The no-
tion of the affine extension was originally introduced by
means of a construction connected with a special co-
ordinate system and it will be here referred to in the
same way, but the whole construction and its results
are coordinate independent. One may also execute the
construction in a wholy coordinate independent manner,
as will be pointed out in the concluding remarks of this
section.

Let {x”‘} be a certain coordinate map valid in a
neighborhood 2 €A, of a point g€ A, and T'g (x*) a field
of components of the symmetric affine connection in the
natural frame corresponding to this map. This field is
assumed to be analytic in Q.

As is known, an affine geodesic T’ in/],l is a curve de-
scribed in the map {x}, after an appropriate choice of
its parameter 7, by the equations

lzga o iEB 1&1
_l 2 Iw(g“) d T _09 ( 1)
where

EX(7):i=x%oT(7), Tp(E*):=Tg(E%E%, .. . &");
all Greek indices range from 1 to » and summation is

indicated by repeated indices.

Differentiating (2.1) » - 2 times (»=2,3, «+*) with
respect to 7, we get

dgh dg | dth

drgl! [ 2.2
aTr" FBIB2'"BT dr dt dr 0, (2.2)
where

(2.3)

and thus for any integer »> 2 the field I‘g‘lemBr is de-
fined in © by induction. The comma represents partial
differentiation with respect to x® and the round brackets
denote the complete symmetrization over all indices in-

side them.

o . T - - by
FBIanaoﬂr'—r(BlﬁznoaB,r-I,BT) (r l)mﬁlﬂzrﬂgo--ﬂr)o
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Let us take a geodesic I" passing through a point ¢
with coordinates £%(7,)=: £2 and let us consider another
point p on T characterized by the value 7 of the param-
eter. For ¢,p e Q the following Taylor expansion holds:

“ oy (48 1 (d% 2
EX(r) = £8 + (d7>0 (T_TO)+§!-(E§2—>O (T=79)

1 [de 3
MY (F)O (T= 7"+ =

(2.4

The index O denotes that all derivatives of £ are
evaluated for 7=7,, i.e., at the point 4. From (2.2)
and (2. 3) they can be expressed by means of the values
of the fields r§1-°°ﬁr at the point ¢ and by means of the
components 1%: = (d£%/dT), of the vector [ tangent to T
at the point g. Therefore,

EXT)=£5 +1%(T - 1) = (1/21)T 5 (g)
x[B1gP2(T — 7,)% - (1/3! )F“BISZBB(CI)

XIBBolBa(T = T)3 — oo, (2.5)

For given I'g, in @ all the coefficients in the series
above are given. The series (2.5) determines then a
solution of (2.1) as a function of 7 in terms of the initial
conditions £§ and [* and is convergent in a certain
neighborhood U of g, where UC Q. It is a result of the
analyticity of I'y, in the region Q and of the Cauchy
theorem on analyticity of solutions of a set of ordinary
differential equations.

If one introduces in U a new coordinate map {y"‘} such
that

X% = xg = y* - (1/20)T5, ()y"'s

= (1/31)T8 0, @)y 19P2y%8 — = o (2.6)
Eq. (2.5) will, in this new map, take the form
N =% T(1) = (7 = T H%. 2.7

The coordinates y® are called normal coordinates at the
point ¢ (or with the point ¢ as their origin). They are
valid in a neighborhood U of ¢. Generally, a normal
coordinate system at ¢ may be defined as one in which
all geodesics passing through the point ¢ are described
(possibly after a suitable change of their parameter) by
a linear equation (2.7). The formula (2. 7) also implies
that any point p ¢ U may be connected with ¢ by only one,
geodesics, i.e., U is a star-shaped neighborhood of ¢4.

Here is a list of basic properties of normal
coordinates.

(i) The pair (U,y?) belongs, under the assumptions of
this section, to the analytic subatlas onA_.

(ii) A coordinate map {y®'} will be normal at ¢ if and
only if it can be obtained from a normal coordinate map
{»°} at ¢ by means of a nondegenerate linear transfor-
mation with coefficients being constant in U,

A normal coordinate map {y°} is called associated
with a map {x*} at the point ¢ if at ¢

oy%
y*=0 and ( ) =0g.
ox® g 8

Geometrically the coordinate lines of the normal co-
ordinate system associated with a system {x¢} are

(2.8)

Stanistaw L. BazaAski 218



geodesics tangent at ¢ to the coordinate lines of the
system {x*}.

(iii) Let {9} and { y*'} be the normal coordinate
systems associated, respectively, with systems {x“}
and {x®'} at the point ¢; then

. ax*’
y¥'= (7) ¥
a q
holds for the normal coordinates of any point p € U—the
star -shaped neighborhood of 4.

{2.9)

(iv) In the normal coordinate system {y°} at ¢ at any
point pc U
(2.10)

Ti g, 1P 0o r=0

for any integer »> 2. The star is to indicate that the
components of considered fields are taken in a normal
coordinate system. (The first of these equations is also
sufficient to characterize the normal coordinates. )

Expanding (2. 10) in Taylor series around g, we im-
mediately get that

(v) At the point ¢, in the normal coordinates at g,

I":ya(q):o
(2.11)

@
‘91"'Brv71---7s’((1)

Il
o

for any integers »> 2 and s 2 0.

Both the map {x*} and the normal map {y°} asso-
ciated with it at ¢ define in the tangent space T, at the
point ¢ the same natural frame

2 2 1
5x—°"q: ay_aq, A=1, .. .40
From this observation and from (2. 9) the next property
follows.

(vi) 1f at the point ¢, in the normal coordinate system
{y"‘} associated with a system {x"’}, a set of components
A% (L is a collective index) is given which under a trans-
formation to another normal coordinate system { v},
transform like components of a relative tensor, then
A} are numerically equal to components A; in the map
{x“} of a geometric object A defined at the point g of 4.
The object A transforms under a change of coordmates
{x*} —~{x*'} (where {y*'} is associated with {x*'} at ¢)
like a relative tensor of the same weight and kind as A*
under {ye}» {y*'}.

This last property provides the foundation for the
following constructions.

Let T be a relative tensor field defined in a neighbor-
hood of a point qC/] and Tg‘ .,.5,% be its components in
the natural frame correspondmg to coordinates {x"‘}
The 7th affine extension T7T(g) of T is defined at the
point g as a geometric object whose components 7,

L d
T;,"ll.'_,'B"l‘k(q in the coordinate map {x"‘} are defined as !
.. 0T TE ek
en i () 1
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where T} %13 ®r are components of the field T in the
normal coorémate map {y°} associated with {x*} at 4.

Thus, the 7th affine extension 37T of a relative tensor
field T of the type (%,!) is a relative tensor of the same
weight as T and of the type (k,I+#); further

H(" eee7y) Tgl BO;k' (2.13)

Qe

q Pyreo¥l Blouﬂf

The procedure of constructing the affine extension
may be applied not only to relative tensor fields but also
to fields of some other geometric objects. One of the
more important examples is provided by the affine con-
nection field of the manifold. Since under a change of
normal coordinates {y*}—~{y*} the T'g are transforming
like components of a tensor field, the quantity  7-*T(g)
(r=3,4, +*) defined at the point g in a coordinate sys-
tem {x°} by the components

ﬂ(q):z(mﬁ—) , v=3, 4, (2.14)

F) yﬂ, iy ayﬁg
where I'},* are the components of the affine connection
field in the normal coordinate system {y®} associated to
{x*} at ¢, is a tensor called the (r - 2)th normal
tensor.

It fulfills the following symmetry conditions

(7 — N« — N« —_
N B1BaB3e0«Br — N =N B1Bo(BgeeeBy) — Na(515233~-~ﬂr) :

(2.15)

(818,)BgessBy

The last of them follows from (2.11),

Another important object of this kind is provided by
the concept of the absolute extension of a relative tensor
field in the direction of a given curve. Let y: I"z‘l71 (
CR) be a curve passing through a point qez‘]" and let
x%(0): = x*o ¥(0) be coordinates in a map {x°} of points on
¥ which belong to a star-shaped neighborhood U of 4.

In the normal coordinates {y*} associated with {x°} at

g the coordinates of the same points on y will be denoted
by y%(0). Let T be a relative tensor field defined in a
neighborhood of g. The rth absolute extension of T in
the direction of ¥ at the point ¢ € v is a relative tensor
(#7T/do7)(g) at g, of the same weight and type as T,
whose components in the coordinate map {x*} are defined
as

TR 6w @yoenoyf 1
‘T;‘Er_"(q):: (dar TE s (y4(0),3%0), . . . ,37(0))
(2.16)

The formulas (2.12) and (2. 14) have defined the ob-
jects T7T(q) and T™*T(g) at a point ¢. Application of
these definitions at every point of a convex region of /4,,
leads to corresponding fields of affine extensions 77T
and & °T" in that region. These fields may be expressed
in terms of the field 7 and its covariant derivatives as
well as of the curvature tensor of the manifold and its
covariant derivatives. The corresponding formulas are
given in the literature.3:* Here only some more im-
portant examples will be quoted.

The first normal tensor: The following relation be-
tween the curvature tensor and the first normal tensor

R%g6 =N — N%ys (2.17M)
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follows from the definition of R"‘B,6 in the normal co-
ordinates and from the tensor character of all the quan-
tities involved. Equations (2.17) and (2.15) for N%,,
may be solved algebraically to yield
Naﬂvo == %(Raﬂra +Ra736)

= - 3(2R%,, + R%,,). (2.18)

The second normal tensor: By differentiation of the
Riemann tensor and by Eq. (2.14),

R%pe16 = Nere = N¥gyge (2.19)
which together with (2.15) determines
GNaﬂrﬁe == 5Ra875;e - 4Raﬂae;r
- BRaesﬁ;r - 2Rase7 H: Rayee;s- (2- 20)

It may be shown by induction that the »nth normal tensor
is determined by the curvature tensor and by its
covariant derivatives up to the order n-1.

The extension of a vector: By definition the compo-
nents of the first affine extension of a vector T are

3T+
a—— —
qa,T _( 3y >q . {2.21)
However,
o
%:(vum* _Trero, (2.22)

Since the second term here vanishes at the origin ¢ of
normal coordinates, we see that the first extension of
a vector (as well as of any other tensor) equals its co-

variant derivative
AT=vT. (2.23)

For the second extension, inserting the right-hand
side of (2.22) into the definition, we obtain

22T* ) ?
q,,T= =V, TY)* 3
" (ay"ay“ . (8y" g )Q -(ayv 1"‘21:7*")4

(2.24)

=V Ta;Naauu”'

This formula shows (since V,, 7*=4,d,T%) that 4,
#d,4,, which was also evident from (2.18) and (2. 20),
Similarly

q,,T°=V,, T - N

pvi

v, T°

apyv " W

vV T° - N*

ouv o

-N® VT°-N_ v T*-N* .T°.

opp v ove o gpviL (2’ 25)

The absolute extension of a vector: The same pro-
cedure applied to the absolute extension of a vector
along a curve ¥ (parametrized by o) leads to (¢ being the
tangent vector to )

gaTr* DT*

o =35 t4v, T, (2.26)
%:Qgg -Ne T (2.27)
g—dBOT—: Z—DdiCTT; - Nmpuvantutyta - N“prT"t“ I;t;

_ 2NQW£_T (o) — N‘*W’;ﬁ” . (2. 28)
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Generally, for the nth absolute extension, using the
Leibniz rule for the nth derivative of a product, we get

H"TU‘ gn-l DTa 3n-l
dom ~dom o ~qomt Tew )
gn-l DT« n=2 <n_1>gn-£-1 N Hi
“ao de BN ¢ ) aorer T T (7).

Now the formula above can be applied to its first term.
Repeating this procedure » — 2 times (in the last step
I/do=D/do), we come to

qFne Drre n=2 ne=j=2 (n—]'—l A n=j-i-1 N
don - do-n _Jg fv;;o i )do-n-j-i-l (Fpu)

; :
X g_ 2’2}0 X
do? \ do’
Here, for any integer », 1<¢<n-1, we should
insert

ar . 1V (1) 1\ 7!
do'(r"“)““m,?mk,(zl) (31) (z!) AVIRER)

(2.29)

XNamzal...aiﬂl...ej...gl...gktal cec it
x:’”ﬁl...gtﬁj .u.gltxl...gltxk
do do do? dot

(2.30)

where the summation runs over all the sets {7,j,#,
. . .,k} of nonnegative integer solutions of the equation

i+2 3t et o=y

In the considerations above use has been made of the
fact that the Leibniz rule and the formula for the xth de-
rivative of a composed function,® which led to (2. 30),
apply without any change to the xsth absolute extension.

Formula (2.29) is then a recurrence relation for the
nth absolute extension in terms of extensions of lower
order applied to the vector T, its first n -2 absolute
derivatives and the tangent vector ¢{. For a particular
case of T=+# it reduces to (1.4} and (1. 6). Neither (2.29)
nor (1.4) has been published before.

In the review presented in this section special co-
ordinates have been extensively used. Such an approach
has made it possible to perform the desired calculations.
For the very definition of the objects introduced here,
however, it is not necessary to call for special co-
ordinates. These objects may be defined purely geo-
metrically, for instance, in the following way.

Consider the exponential map at the point ¢,
exp,: O(T)~A,

that is defined as a mapping of an open neighborhood
O(T,) of the zero element of the tangent space T, into
/4,, under which for any ¢< O(7T)

t—exp,(f)=T,(1),

where T, is a geodesic such that T',(0)=g with ¢ being
its tangent vector at g. As it is known,® exp, is a dif-
feomorphic mapping of O(Tq) onto an open neighborhood
UCA,, of the point g. Under its inverse mapping, In_,
tensor fields on U are dragged along onto tensor fields
on O(Tq) (since dln, is one to one for the domain con-
sidered here). Thus to any tensor field T on U there is
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assigned a tensor field T* on O(T,). Since the partial
differentiation of tensor fields on a vector space leads
to tensor fields, the value of the nth partial derivative
of the field T* evaluated at the origin of T, gives the »th
affine extension of T at ¢q. Similarly, the nth derivative
of the field T taken in the direction of a curve In Y
(which is passing through the origin of 7,) and evaluated
there leads to the nth absolute extension of T in the
direction of ¥ at g.

3. THE PROOF OF THE THEOREM

Since (1.1) holds in any coordinates from an analytic
subatlas, it may be written in the normal coordinates
{y“} associated at the point ¢ with the coordinates {x"‘}
originally used in (1.1). Thus, denoting by y*(7):
=9%o¥(7), for a point p=y(7) such that p € UC Q, where
U is a neighborhood of ¢ = ¥(7,) in which (2.5) is con-
vergent, we have

« « 1 fare
Y1) =¢ (T—T°)+§_<7d_1’—>o (T=Tg)e4eee
1 (d"t*"‘

T ) (7= )™ tees (3.1)

ar
here t5*:=(dy*(7)/d7), are components in the normal

map { y°} of the vector / tangent to ¥ at the point ¢ and
besides that according to (2. 8) the coordinates of the

point ¢ are equal y*(7,)=0.

A geodesic T', passing for the value 0, of its affine
parameter o through the point ¢ with [ as its tangent
vector at ¢ is, according to (2.7), in the map {y°} de-
scribed by the equations

n%*(0) = (0 - o )i**,

where n%(0):=y*- T',(0).

(3.2)

The question for which ! the point p= ¥(7) will be lying
on T, leads to the equation

n%0) =y*(1), (3.3)

which may have solutions for a set of values of the
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parameters ¢ and 7. We shall limit the number of solu~
tions by demanding that 60— 0,=7-7,. Then (3. 3) to-
gether with (3.1) and (3. 2) determines

« er 1 drs>
=t +-2—‘._(—dT)o (7=t e
___1 d._._" * n se 0
+(n+ 1 (dr" )o(T_TO) * ’ (8.4)

The series (3.4) is convergent if and only if (3.1) is
convergent. Formula (3.4) gives a relation between
components in the map {y®} of vectors defined at the
point ¢g. Due to the definition (2. 16) it is equivalent to
the following vector relation at ¢

1
l=t(q)+2—! :»Id_“t- (@) (T=T)+es
———1 g———"t n 6 oo
+(n+ 01 ar (@UT = T) 4 oo, (3.5)

and that completes the proof.
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We use the multiple time scale perturbation method to study the lattice dynamics of an anharmonic
crystal. The Heisenberg equations of motion for the creation and annihilation operators are solved, and the
frequency shift and the decay constants are found to the second order. We also discuss briefly how to

apply our solution to calculate the correlation function.

1. INTRODUCTION

We consider here the problem of a three-dimensional
anharmonic crystal. In the second quantized form, the
phonon creation and annihilation operators obey a sys-
tem of coupled nonlinear equations. Techniques of study-
ing these coupled phonon problems are plentiful. For
example, the phonon frequency shifts and lifetimes have
been calculated by Kokkedee,! using a diagrammatic
technique, by Maradudin and Fein, ? using phonon propa-
gators, and by Cowley, ® using the thermodynamic
Green’s function, Later, Wallace* developed a method
using undetermined coefficients to renormalize the pho-
non creation operators to first order, and it was found
that the method worked well and was simple compared
to some of the complicated diagrams summations.'~?

In the quest for simple yet powerful techniques to
solve this many body problem, it is surprising how rare-
ly one resorts to methods that abound in nonlinear me-
chanics, The authors® have recently shown how an al-
most trivial zeroth order solution of the equations of
motion lead to the Wigner—Weisskopff approximation
frequently used in quantum optics. Our primary purpose
here is to apply a method from nonlinear mechanics,
that is, the so-called multiple time scale analysis, ®®
to the anharmonic crystal problem and show how the
method easily gives the phonon frequency shifts and life-
times to second order, in comparison with the complex-
ity of the methods employed in previous treatment.'™
Working directly with the operator equations of motion,
we show how the successive higher order solution may
be achieved without encountering the usual secular terms
in Hamiltonian perturbation theory. Incidentally, the
subject of secular terms and its removal by a new per-
turbation theory has recently been studied by Helleman
and Montroll.” The multiple time scale analysis has
been applied to many problems. Lee, Lee, and Chang®
applied it to the spontaneous radiation process. Varga
and Aks® applied it to the ¢* model of quantum field
theory and obtained a first order renormalized Hamil-
tonian, while Frieman'’ applied it to irreversible ap-
proach to equilibrium in gases. We attempt to fill in the
gap here and apply the method to solids and specifically
to coupled phonons in an anharmonic crystal.

In Sec. II, we shall illustrate the principle of multi-
ple time scale analysis by applying it to a problem of
a nonlinear oscillator so that our paper is more or less
self-contained. The equations of motion for the creation
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and annihilation operators of the crystal are solved in
Sec. III. As an application of our general solution, we
shall apply it to calculate the correlation function in
Sec. IV.

ll. THE MULTIPLE TIME SCALE PERTURBATION
EXPANSION (MTSPE)

Before we go to the more complex analysis of the an-
harmonic lattice problem, let us give a simple example
to illustrate the principles of MTSPE applied to non-
linear oscillations. The example is well known, but we
present it here to make the paper more self-contained.
Consider a nonlinear equation

At

LI w2pin) = e, (2.)
with w being the frequency (real) and ¢ a perturbative
parameter.

It is well known that the ordinary perturbation theory
cannot be applied to (2. 1) due to the so-called secular
terms of the form ¢ exp(iwt), t®exp(iwt), ---, etc., in
the higher order expansions. This divergent difficulty
can be avoided by introducing the MTSPE as we shall
illustrate. Let us replace the original single time vari-

able £ by a collection of variables 7=(7), 7y, T, - =)
defined by

T(J = t,

T,=€"+x,, n=1, (2.2

The {x,} in (2.2) are considered independent of each
other, and hence the new variables {1-"} are also inde-
pendent of each other. We shall now generalize f(f) in
(2.1) into a function of many variables A7) =f(7,, Ty, - -),
and require it to obey the following equation:

2

E%Zf(T[), Ty, e e o) + (sz(To; Tyymee ) :Gf(TU, Tyyoee )2“ (2- 3)
If such a function f(7) is found, then, by simply setting
all x,=0, or equivalently all 7,=¢€", we can recover
the original f(#). This is the basic principle of MTSPE.
The generalization to f(7) gives us a partial differential
equation (2.3), which itself cannot determine f(7) uni-
quely. In fact, in the search for such an f(7), we have
the freedom to impose certain extra conditions upon f.
As we shall see later, if we choose these conditions
properly, the secular terms can be systematically re-
moved and give rise to a renormalized frequency.
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Let us expand f(7) into a power series of €,

AT =F (T +eff(T) + -+, (2.4)
then,
f 9 d
= = pem——
a3, T ear,)
and
aZf 32 2 82
+
ER: _Zf $5ram) T € Frar,
2 az
T arar, T T
. (2.5)

Substituting (2.5) into (2.3) and comparing the coeffi-
cients to each order of €, we get

2
O€): orafy+ Wy =0, (2.6)
0
O(e): 1o + Wiy =12 (2.7
(€'): 3_270f1 ‘a‘;oa—.rlfo i =15 .
o 92 2 22
O(e%): 'é—?zf2+za'r a7 f1+“a7'oa'rzf“
+—zfo+w 2= 2/t (2. 8)
The solution for (2. 6) is simple, namely,
Fo(T)=A(Ty, Ty, + - +) exp(iewT,) +c.c. (2.9

where A(7,, T,, --+) is an arbitrary complex function of
Tys Toy <+, ete., and c¢.c. means its complex conjugate.
To the next order O(¢), we shall substitute (2.9) into
(2.7), and find

exp(iwTy) +c.c. P

82
Wﬂ + w2f1 = [A(Tn Toy = -)

0A
_2(87 iw exp(iwTy) + ¢, c) . (2.10)
By integrating (2.10), we can see that the term
exp(inU) will contribute a secular term of the form
T,exp(iwTy) in the f;. To remove this term, we are
forced to impose an additional condition on 4,

0A

57—1:0, (2.11)

which implies A =A(T,, 75, **<). With (2.11), the f; can
be integrated to yield a well-behaved function,

Alz

A? ) i
ﬂz—%exp(12w70)+—wz—+c.c. (2.12)

Proceeding to the next order O(€?), we shall substi-
tute (2.9) and (2. 12) into (2. 8),

A 3
f2+ w¥,= <—1-91—21-A exp(szO)—%zexp(won)+c.c.>

[ th(aaA)exp(sz +cgc.] .
2

Again, the terms proportional to exp(iwT,) will give rise

(2.13)
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to secular terms. Hence we shall require the coefficient
to exp(iwTy) equal to zero,

5142 . 0A

A—iwa—=0. (2.149)
37 a7,

The solution of (2.14) is in the form,

A(TZ’ 3 """ ) :B(TS’ 74! et ) exp(iaTZ)’
where
$IBI%/wi=—wa
or
A(TZ’ 7'3, )_B(Tsa 4 *° ')exp[— i%“Blz/ws)Tz]

(2. 15)

From (2.9), (2.12), and (2.14), the function f(7)

becomes
f(T) f(TO’ 2 Tgy °° ')
=(B(1y- - ) expliw[Ty~ 5 (1BI%/w*)T,]t +c.c.)
+e(1B1%/w - (B2/3w? expli2w(T,~ 4 (1BI2/whT,]}
+e.c.)+O(€d), (2.16)
The perturbation scheme can be carried out in a sim-
ilar fashion to any order, although the complexity is
formidable. To the second order, we can set all higher
order time scale variables 74,74, --., etc., equal to
zero, and B(74, 7,, ---) becomes a constant (independent

of 73, s o<, etc.). The perturbative equations (2. 6),
(2.7, ---, etc., are correct to O(€®) only.

The lowest order term f;, becomes

fol™) = Bexpliowl[T, - (1B1%/o)7,]} +c. c. (2.17
Setting x, =0, we have

fy(#) = Bexpli{w + 2w)t]+c.c. (2.18)
with

Aw=- €25 | BI?/w.

The constant B can be obtained by initial condition. Let
us suppose

A0 =1, F(O)=1;
then
B=%+0(¢)

and, therefore,
5 1

A==€ ﬁ-—g+0(€

(2.19)

We thus see that, by properly choosing these addi-
tional conditions in MTSPE, we can systematically re-
move the secular terms. Also, from the second order
solution (2. 16), we see that there are two time scales
involved in the function f(#), namely the inverse of fre-
quency w™ and shift 4w™, The removal of the secular
terms defines the behavior of f{¢) in these time scales.
Higher order T,’s, 2> 3, corresponding to larger time
scale can be set equal to zero as far as the calculation
is carried out up to second order only. In the next sec-
tion, we shall use this MTSPE method to the more com-
plex problem of anharmonic lattice dynamics.
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IH. THE MTSPE ANALYSIS OF THE ANHARMONIC
LATTICE

The diagonalization of the Hamiltonian of an anharmo-
nic crystal can be seen in the standard texts of Born
and Hua.ng11 or Peierls.!? We follow here the notation
of the paper by Wallace.* The total Hamiltonian H, ne-
glecting the quartic interaction in Wallace’s treatment,
is given by

H=H,+H,, (3.1)
where, in second quantized form,

HO:ZK)ﬁwxaﬁaK (3.2
and

Hy =X 25 B (@ + al) (e + o) (@ +dlw). (3.3)

PTad

a, and al, are the usual phonon annihilation and creation
operators; w,'s are the normal modes frequencies of

the crystal; k=(K, s), where K is the phonon wave vector
and s is the phonon polarization; B,,.,~ are the coupling
coeificients and depend on the type of crystal structure
under study. It is completely symmetric in its indices,
and contains a factor 5(K +K’'+K”). Furthermore,

B, o» =B* ., _.»; X is a perturbation parameter to be
set equal to unity eventually.

In the absence of the cubic interaction H,, the normal
modes are not coupied and the phonons propagate in the
crystal independent of one another. The introduction of
nonlinearity leads to scattering between the phonons and
each phonon is associated with a life time F;la In this
problem there are thus two distinct time scales: One
is associated with the period of oscillation w;, and the
other is the phonon’s lifetime, and we denote them as
7, and T, respectively.

In the Heisenberg picture, the equations of motion for
a, and al are

4} =iw.al 43 = 593 Begoun(@gs + ) (aem + al L), (3.4
wine
G, == w,a, —% N2, Broo(dte +a_e)(al, +a_.). (3.5)
K'k®

Following the MTSPE, we introduce the variables T
=(T,, T1, -+ +) as before,

a2 L.

a_f_a—+>\a—7+x 5T, (3.6)
and expand the operator ¢.(7T) in powers of A:

a(T) =2, \"a{™ (7). (3.7

n=0

Substituting Egs. (3.6) and (3.7) into (3.4) and (3.9),
and equating like powers of A, we get

O(XY): a =—aO(T) = - iw,a(7), (3.8)
0

o(N): —aa“”(’r)+aa all’(1) == iwa(7)

35 Ba W [a@N®) + a2 () (a7 (1) + a2,

n Ktk®
(3.9
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8
00): 5 a(r) + - a () +2 (7
Ty

0

. 3i «
= - ZQ.)KG:Z)(T) —? Z‘.th'x'
’

x{ a(on(.,) +a(°’(T)][aq H(T) + a o)

() + R0+ (3,10

We can immediately integrate Eq. (3. 8) to give the
zeroth order solution:

aK(D)(T) = 0:0)(0: Tys Tgy »oe ) eXp(— inTD)

(3.11

where we have abbreviated ¢.(0, 7, 7,, - - -) by a{(0)
as long as no confusion arises. If we substitute (3.11)
into the first order equation (3.9), we can integrate it
to get a®(7). To avoid the complication that some of
the denominator in the expression ¢’(7) may go to
zero, let us introduce a small imaginary part € to the
frequencies w,, i.e.,

=a"(0) exp(=- iw,Ty),

w, —w, tie, for all «,

and let € — 0 in the final result of our calculation. Sub-
stitute (3.11) into.(3.9) with w, replaced by w, +i¢, we
find

algl )(T) - aél )(0’ 0: Tza * ) eXp(— zwk 0) -5 L’ ka'x"

KIR®

x{ ‘0”(O)a‘o"(o){exp[i(wx: + w,(,)‘ro]— exp(— inTg)l
Hw, + wemw + wyr + 3i€)

+ 2O (0D expli{w,w — w . )T;) - exp(— iw,7,)
a, (O)Q_K (0) Z((.OK ¥ Wow — @ e ¥ 7/€)
expli(— w_ew + w,,)Tol = exp(~ iw,T,)
(W — W_gw + Wy +i6€)

aZ>(0)al(0) exP[ z((w j:u_ wj;);TD]—_ie:){p(— inTD)}I

+ a2 (0)a!?7(0)

(3.12)

Note that, with the introduction of € in the frequencies
w,, the rhs of (3.9) does not have secular terms, so
that, in deriving (3.12), we must set (3/87,)a(0, 7y, -+ -)
equal to zero. In other words, a{"’(7) does not depend

on 7y:

a(1) = a0, 0,7y, Ty, + (8.11")
< (7)

which implies (8/37))a, =0. The operator a{’'(7)

can be obtained in a similar fashion by integrating the
corresponding complex conjugate of Eq. (3.9). The solu-
tion for a,“ )'(T) is, of course, just the complex conjugate
of Eq. (3.12).

To proceed to the second order O(}?), let us consider
Eq. (3.10). The second term on the rhs of Eq. (3. 10)
contains terms of the form a{¥'(Mal’* (7, a1 (1)aS)™),

.., etc. In expanding them by (3.12), there appear
terms behaving like exp(—iw,T). Hence, after integrat-
ing (3. 10), these terms will give rise to terms pro-
portional to 7, exp(- iw,7,) (i.e., the secular terms).
The method of MTSPE enables us to choose (2/37,)al" (1)
so as to exactly cancel these terms. In particular, con-
sider the term a{%"(7)a2”(7) on the rhs of (3.10). Using
the Hermitian conjugate of Eq. (3.12) for a2’ (7), we
have

) exp(— iw,Ty),
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BKK'K.a(O)T (T)a(l )'f(-,-

;Bxx'n"aé(')'n(o) Z Bx'xlx a(O)(o)a(O)(O)
Kyx2

x expli(=~ we, = w,, + wya)]
- i(wy + Wy T Wy, 3ie)

+ other terms which will not give exp(—iwT)

dependence. (3.13)

In the above expression, the exp(-iwT7,) terms are ob-
tained if (k, = k" and k,= ) or (k,= «” and ¥ =«), and
are equal to

67

5 BlexnBong @l (02 (002 (0)

X eXp(— 1w, To)/[ = (W, + wer + wyew + 3i€)], (3.14)

which is one of the undesirable secular terms that we
intend to remove. Similarly, the contribution to the
secular terms from a{¥"(T)a®)(7) is

6:

- Bt e BY 1 e al%(0)ai¥(0)al®(0)

X eXp(— 1w, T ) /i(Wyer — Wymw = W, = T€) (3.15)

and so on. Proceeding through similar arguments, we
can collect those secular terms from the rhs of (3. 10)
which we shall denote by S,.

2 3¢ .
Sz = —(h )(ﬁ ) 4,(/., B K'K"alg())(o) exp(" l(‘)KTU)

y (B Tgw + s +1
otk S -
= Wyr = Wy = Wya — 31€)

~

_ B* New —;l,‘l

. -
H T i (Wer — Wyew — Wy — 1€)

)
+ Bouen T = e
P(= Wyr — W + W_yw — €)

—B%, .. flage & e ¥ 1 (3.16)

I ET K Weer T W — W, FiE) *

where #, = a"(0)a{"(0). Now, there are still other
secular terms on the rhs of Eq. (3.10), namely when

” 7
—K =K Or —K =K

in the expression

3 s
) B {a QM [a® (1) + ad)(7)]

+afN(T) + al2(T) a7y} -

Using ¢{’" and a%) from Eq. (3.12), we get the secular

term in the case of — k" =«, to be

9 ,
%2 B:x' .xa.fm(o) exp(- ZwﬂcTO)

Ny

X

ey

By soww+ B ngn)
P, Pe+1
(wer +ie  (we Ti€))] °

On the other hand, when — K = k, the secular term can
be similarly obtained as

r-'—"\
~

(3.17a)
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-3 2, Bl axeal®(0) exple i
I

Frer ;’l s +1
PR ” e pr ] X < +- = ) ’
Bn k¥« B_k X" K )<l(w,(n+2€) l(wK' +1€))]
(3.17b)

Collecting (3.17a) and (3.17b), we get the contr1but1on
to secular terms after some rearranging as S
- 9 . .
S;= —%za,f‘”(o) exp(—iw,Ty) 2u (B,’:‘K._K
KIk*
Tigw + 7y + 1
vt BYe o )
X(BK " Kk B-K K g ) Z(QJK: +l€)

-
worr FBR ) (3.18)

+ 1)

Using Egs. (3.16) and (3.18) for S, and S; respectively,
we can write the equation of motion (3. 10) as follows:

d

ai a‘z)(T) +___ a(O)(T) —

+ B:—x K (‘BK

- W, aP(T) +85,+S,

+terms which do not give rise
to secular terms. (3.19)

To remove the secular behavior in ¢f2'(7), the MTSPE
consists in choosing the term (3/97,)a{"(7) so as to
cancel S, +S; in Eq. (3.19),

ai al®(0) exp(~ iw,T o) == 1£,a."(0) exp(~ iw,T,),
(3.20)
where we have written
8, +5,= - i£,a{(0) exp(- iw, Ty

and the operator E’K is given by

“ 18 < ( Pm 7 +1
_ —_- B*on Bu: X = -
& ?%{n . KRR (wy F wyr T W, w + 3i€)

;lK' — ;lxl
(Wyr — Wyew = W, — 1€)

+ B*

K Kt k™

ﬁ- - - ;L .

+ Byrrgex * X -
(Wer + Wy — W_w +Z€)

Piye + i +1
—x? + W e — W + i€)

+B

-X? " -K((U

o P+ 1

n
’ﬁz 'Z“J" ( KK -x(Bx' - +B-n' L3l K.W

: Fiee T e +1
+ B¥ o on(Byw o o + Bhiw s K.)————-—;(wwiis) ) . (3.21)

In the thermodynamic limit of N —~«, the operator
t, commutes with a{’(0). Hence Eq. (3. 20) can be in-
tegrated to give

a;s())(o’ 0,75 7, -) exp(— ingz)-
(3.22)

As before, to the second order O(2%), we can set 7, =0,
for =3, and

a{(1) = af(7 = 0) exp(= i, T

. o):ax(o)(o, 0,0,7,, ..

(3.23)

The expectation value of :E,c is, of course, dependent on
the state of the system.

2 — W, Ty).

For a general state 1{=n,}), we have
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-~ 18 «~
(gg} = —?‘ L Bmc'x"B-x xT k¥

(34 3.4

Moo — N o
W t Wer = Wew T i€

Nys = Nyn Ngw + 1, +1
Wit Wyw = Weo HEE Wy = Wer = Wew — L€

x Rew =N e +1
Wy + Wye + Wy + 3ie

36 < Nt 0wt 1
- Zl BK-KK' Bx" -x"-x'_x'——-“———

L (O),‘l +i€) ’ (3' 24)

where we have used the facts that BY..~=B_ . _» and
that B,,..» are completely symmetric in their indices.

We shall now let € —0; to take care of this singular
behavior, we use the identity

lim[1/(x +i€)]=(1/x), F in6(x)

€=0

with p denoting the principal part. The operator EK can
therefore be written as

b= B, —il, (3.25)
and its average as
(B =(B) = (L.
From (3. 24) we get
~ 18
<Ax> :_ﬁZ' Z Byow Bog skt ew
KR
Hew T 10 +1 Ry — Ve
(CUK + Wye + w“)‘, (w,‘ + Wye — w,‘n)p
Nr = M w By + 70 +1 )
(w,‘ + Wyew — w,")p (w,‘ - Wge -~ w,‘n)p
3 . wtn_ ut
LD N WL L R (3. 26)
P (wx')p
and
N 18
<FK> :%‘7’ L Bmc'x"B-x K KW
X[ (Mew + 7 + 1) 0w, + wye + Weew)
+ (n_xu - n_,‘l)a(w,‘ + Wye = QJK')
+ (nK: -— nkn)é(w,( + Wyew — w,‘:)
+ (Rgn F 2+ 1)0(= W = Wyr = W) ). (3.27)

The above results for the frequency shift (A) and
the phonon lifetime ((I',)) agrees with the results ob-
tained by Wallace! and others. 1% It is obvious that the
present formalism can be employed to solve the same
problem with cubic and quartic interaction. Equation
(3. 22) now becomes

a$ () = a$"(0) expl— i(w, + A)t] exp(— L',t), (3.28)

which shows that, in the long time limit, the phonon
operators decay exponentially with decay constant {C,),
while, in the time scale (T,~w;!), they are oscillatory.

IV. CORRELATION FUNCTION

As a simple application of our general formulation,
let us calculate the correlation function of the phonon
creation and annihilation operators in the von Hove’s
“X2t” 1limit.!* By definition, we want to calculate the
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ensemble average at temperature T of the quantity
(al(t)a,(0)) in the limit that the coupling constant A is
very small (A—0), but time ¢ is very large (f =), such
that A% is finite. Other correlation functions such as
momentum-—momentum correlation function can be ex-
pressed in terms of them through the normal coordinate
transformation.

The simplification in the A% limit is enormous, be-
cause, in that limit, al(f) becomes
al(t) ~ a®(t) ~ a'(0) expli(w, + AJt] exp(=L',2)
(4.1)

and all higher order terms go to zero. Furthermore,
the ensemble average (al()a,(0)) can be evaluated using
the unperturbed Hamiltonian H; i.e.,

lim (ak(t)a(0))
rat ~ ~
=Tr{a}(0)a,(0) exp[~ i(w, + 8,)f — [ ¢]exp(- BH,)}.
(4.2)

Note that we can change the order of 4,(0) in the above
formula in the limit N -,

Let {nD be the eigenstate of H,, so that
a(0)a(0) {n ) = [{nh),
A {ndy =(B)[{nd),
£y = @0 Hndb, (4.3)
where (3,‘) and (L, are given by (3.26) and (3.27). The
trace (4. 2) can be written in the form

(a(t)a,(0))

=2 nexpl-ilw, ¥ (At = (E )t] expl- BT Hwn .
{ne
(4.4)
To O(2?), both (&,t) and (L'} are linear functions of
the occupation number {#,}. The summation in (4.4) can
therefore be carried out easily. Let us write

(B =2 By(k, KV + By(K),

T :;;rl(x, kY + Tp(K) (4.5)
and substitute (4.5) into (4.4); we get
(a(t)a(0) =7y exp{ilw, + 25(k) ]t = Ty(0)t
X I;I’f(x, k't) (4. 6)
with
Ark'D)
1 - exp(— Bfiw,.) (4.7

T1 " explid, (kK = Ty (KK)E = Bhwge ]

and 7, = [exp(Bfiw,) — 1]? is the average number of pho-
non at temperature 7. The expression (4. 7) is the gen-
eral formula for the correlation function, and is very
complicated. We shall try to analyze it for some very
simple one-dimension model later.

In conclusion, we have presented here a very simple
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nondiagrammatic method to solve the equations of mo-
tion for an anharmonic lattice. In our opinion, the meth-
od is not only straightforward but very useful.
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Two infinite families of simple graded Lie algebras (GLA’s) over the complex numbers are described: the
special linear algebras SL(min) [whose Bose sector is the direct sum of a one-dimensional algebra with

the ordinary Lie algebra SL{m)XSL(n)], and the orthosymplectic algebras OSp(2#s) [with Bose sector
Sp(2r) X O(s)]. The GLA’s of physics fit into these two families either directly or via Indni-Wigner
contraction. These algebras along with further exceptional GLA’s constitute all the classical GLA’s, i.e., all
GLA’s with a nondegenerate metric (not necessarilly Killing) form. The existence of infinite families of
hyperexceptional GLA’s, i.e., of GLA’s that are simple but not classical is pointed out.

1. INTRODUCTION

The supersymmetries discovered in dual models and
in quantum field theories are expressed in terms of
graded Lie algebras (GLA’s) of conserved charges, 1™
The graded Lie bracket of two charges is not always a
commutator as for ordinary Lie algebras; for two
fermionic charges it is an anticommutator, Supersym-
metries mix bosons with fermions, Progress in the
field of supersymmetries has been somewhat hampered
by the lack of information on the structure of (at least)
the finite-dimensional GLA’s, Since all work on super-
symmetries has thus far been quite divorced from ex-
periment, a classification of GLA’s may spur the choice
of a more realistic candidate for the purposes of parti-
cle physics. Motivated by this and by the purely mathe-
matical interest of the problem we describe two infinite
families of simple GLA’s (i.e., GLA’s that have no
invariant subalgebras) over the complex numbers. The
extent to which these account for all simple GLA’s is
discussed in Sec. 4.

2. SPECIAL LINEAR GLA's

An algebra of this family is determined by two positive
integers m and x and is written SL{m!%). We write the
members of SL(ln) as (m + n) X(m +») matrices,
divided into blocks as indicated:

<m Xm | m ><n>
nXm nXxn
A boson (even element) B has the form
a 0
B=V\o a)’
trB=tra -trd=0.
A fermion {(odd element) F has the form
0 b
c 0

F=

The bracket of two B’s or a B and a F is a commutator,
ay a, ~ a,a, 0

B,B,]=
(B,5.] 0 dydy - dyd,

0 ab - bd
[BF]=
dc —ca 0
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The bracket of two F’s is an anticommutator (Jordan
product),
b, +be, 0

{F,F,]=
v 0 cbytcyb,

The dimension of SL(m|#n) is (m+n)* —1. For m+#un,
SL(min) is a simple GL.A, with Bose sector a direct sum
of a one-dimensional algebra and the ordinary Lie al-
gebra SL(m) XSL(n). For m =n (we call this the
“palanced” case) the identity unit matrix lies in SL(m |#)
and constitutes its one-dimensional center. To get a
simple algebra one must divide by the center, getting an
algebra PSL(m!|m) of dimension 4m? -2, (The “P”
stands for projective), For m =2, PSL (m|m) is simple
[its Bose sector is SL{m)XSL(#)]. The case m=1 is
exceptional and SL(111) is nilpotent.

Special linear GLA’s are also describable by creation
and annjhilation operators aje=%, i=1,...,m+n).
The first s pairs are fermionic, while the remaining »
pairs are bosonic. The canonical quantization relations
are

[a5,a ) =085,

As above, this bracket denotes commutator except when
both operators are fermionic in which case it is an
anticommutator.

Introduce (m + #)? operators

Gijza;a;. (2.2)

Of these, m?+ »? are bosonic (those with i,j =< and
those with ¢,j > m) and the remaining 2 mn are fermio-
fermionic, The G’s close under bracketing and span a
GLA. This GLA corresponds to the GLA of all (m+n)

x (m + n) matrices in the block form given above (and
not just those of trace 0). To implement the correspon-
dence, make G,, correspond to the usual matrix unit e,;.

3. ORTHOSYMPLECTIC GLA’s

In describing orthosymplectic GLA’s one starts with
a graded vector space V with a fermionic component of
even dimension 2+ and bosonic component of dimension
s. A metric is imposed which is antisymmetric on the
Fermi sector and symmetric on the Bose sector. This
metric can be brought to the form
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27 s
c 0 27 (3.1a)
G= ,
0 I s
where C is the antisymmetric 27 X2 matrix
01
-10
01
C= ~10 , C2=—1, CT=-C,
To 1
-10

(3.1b)

and I is the s xs identity matrix. The inner product of
two vectors x and y of the graded vector space is given
by

(x,y)=xTGy, (3.2)
x and v being treated as column vectors.

Consider the linear transformations on V, It is mean-
ingful to grade them, and in particular a linear transfor-
mation may be Bose or Fermi (even or odd), We im-
pose on U the condition of “antisymmetry.” This means

(Ux,y)+ (x, Uy) =0, (3.3a)

except when x and U are both fermionic when it is

changed to
(Ux,y) = (x,Uy)=0, (3.3b)

since the passage from the first to the second term in
(8. 3) involves an interchange of x and U.

Write U in matrix block form as

2r s
a 2y (3.4)
U: p
qg bl s
Then Eqgs. (3.3a) and (3. 3b) become
a®™=CaC, bT=-5, g=-p7C (3.5)

so that the a’s are 2y X2y skew-symplectic (the Lie al-
gebra of the symplectic group), the b’s are s Xs skew-
symmetric (the Lie algebra of the orthogonal group),
and p is an arbitrary 2» Xs matrix which completely de-
termines the s X2 matrix ¢.

The set of all such U’s forms a graded Lie algebra.
We call it orthosymplectic and write it OSp(2#!s). The
dimension of OSp(2r|s) is #(2#»+ 1)+ s(s =1)/2+ 2»s and
it is simple for every » and s. Here is a table of the
first few dimensions:

¥ 11 1 2 1 2 1 2 3 1
s 1 2 3 1 4 2 5 3 1 6
dim 5 8 12 14 17 19 23 25 27 30

2 3 1 2 3 4 1 2 3 4
4 7 5 3 1 8 6 4 2

[\

32 34 38 40 42 44 47 49 51 53
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The Bose sector of OSp(27!s} is the ordinary Lie alge-
bra Sp(2»)X O(s). The GLA’s OSp(2{2) and SL(2]1) are
isomorphic; there are no other “accidental”
isomorphisms,

4. THE KILLING FORM AND FORMS ARISING
FROM OTHER REPRESENTATIONS

The Killing form on a graded Lie algebra with basis
G, is defined by

81, =(G;, G,) =Tr(Ad(G;) Ad(G))).

Here Ad(G,) is the adjoint representation, and, as in
Sec. 2, the trace is taken positive on the Bose sector,
negative on the Fermi sector. For the above algebras
the Killing form is nondegenerate except in what we
call the “balanced” case, i.e., m=n for SL(m|n) and
274 2=s for OSp(2r]s); in the balanced cases the
Killing form is identically 0.

The Killing form generalizes to any representation
S by using Tr(S(G,)S(G,)) and it is advantageous to do so.
For example, in the case of a balanced orthosymplectic
GL A the matrices occurring in the definition furnish a
representation and for this representation the induced
form is nondegenerate.

As remarked above, the balanced cases SL{m ) of
the special linear GLA’s are not simple and it is neces-
sary to divide by the center so as to get PSL(m!|m).
Now there is no longer a useful representation in sight.
But this is easily remedied. As in Ref. 5 we introduce
projective representations, this meaning homomor-
phisms into an algebra PSL{(m|m). Attached to any pro-
jective representation there is a form, for we can un-
ambiguously calculate the form modulo the center.

We propose to call a GLA classical if it is simple and
possesses an ordinary or projective representation for
which the induced form is nondegenerate. The algebras
SL(m|n) [to be replaced by PSL(m|m) if n=m] and
OSp(2r|s) are classical. One of us (I.K.) is studying the
classification of classical simple GLA’s. At this writing
the evidence suggests that in addition to the special
linear and orthosymplectic GLA’s there may be an in-
finite family of 17-dimensional ones, a 31-dimensional
one, and a 40-dimensional one. The prospective 31-
dimensional one has G,XSL(2) as its Bose sector. The
other exceptional ordinary Lie algebras (F,, E,, E., Ey)
do not make an appearance.

In addition there exist nonclassical simple GLA’s.
The most obvious of these is the algebra of all deriva-
tions of a Grassman algebra {(or in other words the al-
gebra of general coordinate transformations in a space
with fermionic dimensions only). This is incidentally a
perfect analogue of the first of Cartan’s four families
of infinite pseudogroups,® and the situation shows a
remarkable resemblance to what is known and con-
jectured in characteristic p.” Warren Nichols is in-
vestigating nonclassical simple GLA’s.

Pais and Rittenberg® study GLA’s subject to the
strong restriction that the Killing form is nonsingular
both for the whole algebra and for its boson part (this is
their “definition” of semisimplicity). After developing
the theory to a certain point they make the further tacit
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assumption that the boson part is simple (and not just
semisimple). It is as a consequence of this extra as-
sumption that they find only the algebras OSp(2+11).
Indeed of all the classical algebras these are the only
ones that meet all the restrictions of Pais and
Rittenberg.

The nature of the representations of classical GLA’s
remains to be investigated. It would be desirable to de-
termine all the irreducible representations and settle
for which simple GLA’s the general representation is
completely reducible (it is easy to see that this is true
for some and false for others).

5. REAL FORMS

It must be emphasized that all the above discussion
referred to algebras over the complex numbers. A
study of the real forms of these complex algebras has
yet to be made.

Two real forms deserve special mention. The first
are designated special unitayy and written SU(m |#n) [not
to be confused with the ordinary Lie algebras SU(m,n)].
In matrix form (with { denoting complex conjugate
transpose), SU(m|xn) consists of all matrices

m n
a b m,
bt d n

where a and d are skew Hermitian (a'= -a, d'=~d)
and tr(a — d)=0. The Bose sector of SU(m|x) is SU(m)
XSU(n) X U(1) for m #n. On extending the coefficients
from the real numbers to the complex numbers, one
converts SU(m|n) to SL(min). For m+#n, SU(min) is
simple, but for m =#n, SU(Gm1m) must—like SL{m|m)—
be divided by a one-dimensional center to achieve
simplicity.

In the second real form we change the orthogonal part
of an orthosymplectic GLA so as to allow an indefinite
metric and leave the symplectic part unchanged. Write
s =s4+s, and let g be the diagonal matrix with s; one’s
and s, minus one’s down the diagonal. The matrix G
giving our metric is now

27 s
Cc 0\ 2
0 g/ s
and the GLA OSp(271sy, s;) consists of all
a p
qg b
with
a¥=-CaC,
bT = - gbg,
q=-gp™C.

Its Bose sector is Sp(2»)xO0(s,,s,). All these real al-
gebras become OSp(2#!s) over the complex numbers.

6. GRADING BY THE INTEGERS

It is to be noted that we have been discussing only
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GLA’s which are graded “mod two.” It is desirable also
to study GLA’s which are graded by the integers. Such
an algebra L is a union of subspaces L, where 7 ranges
over all the integers (positive, zero, and negative). A
member of L, is said to have degree i. The bracket of
an element of degree i with one of degree j has degree
+ 7.

Of course from a GLA graded in this fashion we can
derive one graded mod two by grouping together all even
i to form the bosonic part, and all odd ¢ to form the
fermionic part. But this does not answer all questions,
and at some future time it is hoped to make a
comprehensive study.

7. THE GLA’s OF PHYSICS AS CLASSICAL GLA's

The GLA’s thus far encountered in physics are (after
complexification) special linear or orthosymplectic or
else they are In6nli—Wigner contractions of these GLA’s.

First of all, the five-dimensional GL.A discovered by
Neveu, Schwartz and Ramond® is precisely OSp(2]1)
after complexification.

Wess and Zumino? studied a 24-dimensional GLA with
a 16-dimensional Bose sector spanned by the 15 genera-
tors of the conformal transformations SO(4,2) and by
the U(1) of ¥,-transformations. Now 50(4,2) (the special
orthogonal group on a six-dimensional space carrying
a metric with 4 one’s and 2 minus one’s) becomes on
complexification the algebra of 4 X4 matrices of trace 0.
Taking the direct sum with a one-dimensional algebra
gives us the Bose sector of SL{411), and indeed the
whole Wess—Zumino algebra becomes SL(4]1) on
complexification.

The more popular 14-dimensional GLA of Volkov,
Akulov, Wess, and Zumino?® has the 10-dimensional
Poincaré algebra as its Bose sector and is not semi-
simple. It can be obtained however from the simple 14-
dimensional orthosymplectic algebra OSp(4|1) by Indnli—
Wigner contraction. Indeed the Bose sector Sp(4) of
OSp(411) is isomorphic after complexification to the
de Sitter algebra® SO(3,2). If, from the de Sitter genera-

tors M, (=-M,,), a, b=1,...,5 we define new genera-
tors M,,=M,, for a,b=1, .. .,4, M,;=2M,, the algebra
of the M, (a,b=1, .. .,5) will have A-dependent struc-

ture constants and in the limit A —~ 0 the Poincaré
algebra is obtained. If at the same time one defines
barred Fermi generators F_=ViF,, a=1,...,4,
corresponding to the four Fermi generators of OSp(4/1)
then in the limit A — 0 the ten barred Bose and four
barred Fermi generators span precisely the nonsemi-
simple Volkov—Akulov—Wess—2Zumino GLA.

Finally, in the “graded” Riemannian geometry'® of
supergauge theories one considers manifolds that can be
locally mapped onto a flat graded space with orthosym-
plectic metric.

We thus see that the GLA’s occurring in physics thus
far are either classical GLA’s or contractions thereof.

8. CONCLUSIONS

We have defined two families of simple GLA’s,
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special linear and orthosymplectic. Every GLA which
has hitherto arisen in physics is either one of these
algebras or a contraction of one of them,

We call a GLA classical if it is simple and possesses
an ordinary or projective representation whose induced
trace form is nondegenerate. The classification of
classical GLA’s is under investigation. Evidence points
to the possible existence of additional classical GLA’s
with dimensions 17, 31, and 40.

In addition to these “exceptional” GLA’s there exist
still other (“hyperexceptional”) simple GLA’s which are
not classical at all, i.e., for them the trace form at-
tached to every representation is identically 0. There
appears to be a connection between these hyperexcep-
tional algebras and Cartan’s infinite pseudogroups, of
the same kind as has been observed for ordinary Lie
algebras of characteristic p.

Note added in proof (Dec. 26, 1975): There have been
numerous further developments, notably a comprehen-

sive announcement by V.G. Kac, Functional Anal. Appl.

9, 91 (1975). Several GLA “newsletters” have been
prepared in an attempt to keep interested people in-
formed. They are available from the authors.
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A fully statistical treatment of the spectrum of light scattered by a simple fluid is given. The results are
shown to be in close accord with the phenomenological theory of the same process.

1. INTRODUCTION

Expressions for the spectral density of light scattered
by a simple fluid may be obtained from either a phenom-
enological or a statistical treatment of the problem.

The phenomenological theory dates to the work of von
Smoluchowski! and of Einstein.? Later and fuller treat-
ments have been given by Benedek® and van Kampen*
among others. A distinguishing feature of these treat-
ments is that the refractive index {or the dielectric
tensor) of the medium appears explicitly in the expres-
sion for the spectrum.

Carrying over the work of van Hove,? Komarov and
Fisher® were the first to give a statistical treatment
of the inelastic scattering in simple fluids. They used
first Born approximation in the external field. This
work was later extended by Tanaka.’ In these works,
the dependence of the spectrum on the refractive index
is not clearly exposed. This dependence has been, at
least in connection with the corresponding elastic prob-
lem, a subject of much discussion.?

In the recent literature, two works bear directly on
this connection between the statistical and phenom-
enological theories. First, Bedeaux and Mazur® have
given a detailed statistical treatment of the dielectric
tensor of a simple fluid. Their work, which is not re-
stricted to dilute systems, has, from our point of view,
the advantage that their choice for the effective field
acting on a molecule of the medium gives the basic
equations of the statistical theory a much simpler form
than in previous works. They show that wave propaga-
tion in the fluid can be described as propagation between
density fluctuations through a medium characterized by
the Lorenz—Lorentz value of the dielectric tensor. This
is achieved by what amounts to a resummation of the
basic series describing propagation between particles
through a vacuum and represents the first step in the
approach of the statistical theory to the phenomenologi-
cal theory.

In the second recent paper, Felderhof!® has reformu-
lated and extended aspects of Ref. 9. He has determined
in a fully statistical way the differential elastic scatter-
ing cross section and turbidity for optical waves inci-
dent on a simple fluid and has shown that these results
agree precisely with the phenomenological expressions
for a medium characterized by the Lorenz— Lorentz
dielectric tensor,

In the present paper, we are concerned with the in-
elastic scattering of light from simple fluids. We shall
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not discuss any aspects of the absorption or turbidity
problem. In Secs. 2, 3, and 4, we again reformulate
the statistical problem and compute the spectral den-
sity to the same order as in Ref. 10. This is shown to
agree with the phenomenological result. These sections
are a more or less direct extension of Felderhof’s work
to the inelastic case. The basic result of these sections
is Eq. (2.25) which expresses the fluctuations of the
electric field as a series in orders of density fluctua-
tions. This series allows, in principle, the evaluation
of all higher order terms in the spectral density in
terms of the correlation functions of the density fluctua-
tions. The “driving” term in this series is essentially
the Lorentz effective field,

In Secs. 5 and 6 we take into account the effects on
the spectrum of some of the higher order correlation
functions. This is achieved by making a Gaussian ap-
proximation to the distribution function of the density
fluctuations and summing a certain subclass of dia-
grams. The resulting spectrum is shown to be of the
same form as that obtained in Sec. 4 but with an im-
proved value of the refractive index, namely, the re-
fractive index within the Gaussian approximation. This
demonstrates, on a completely statistical basis, the
justification of the phenomenological approach in which
the refractive index is introduced from the outset.

In order to conserve space, we refer frequently to
Ref. 9 where derivations of several of the expressions
used in this paper are given in detail. Wherever possi-
ble, we use the notation of Ref. 9.

2. FLUCTUATIONS OF THE ELECTRIC FIELD

For a system of particles in vacuuo with charge and
current densities p,; and J, the Maxwell equations read,
in cgs units,

Ve*E=4mp,,,
1 B
xE=_- 22
VXE=-2C % @.1)
47 |1 9E
VXB= - +C 57’
veB=0.

For a molecular system, the charge and current densi-
ties may be expanded in multipole moments as shown,
e.g., by de Groot. !! Retaining only the electric dipole
contribution to the current and neglecting a small term
due to the convective motion of the dipoles, the current
density and electric polarization P of the medium are
related by
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s, = 202 2 Rl SR - Ry (), (2.2)
where p;(#) and R;(#) are, respectively, the induced
dipole moment and center of mass coordinate of the ith
molecule at time £, Using Egs. (1) and (2) together with
the equation of continuity, we have, after Fourier
transformation, 1

E(R, v) =Ey(R,w) - [ F(R- R’, w) *P(R’, w) &’R’,
(2.3)

where E; is the externally applied field and the tensor
kernel F is given by

w?

FR-R,w)=- (VnVn+ C_z) expli(w/c) IR-R’| ,

{R-R’!

2.4)

In order to obtain closed equations for the fluctuating
fields E and P, one requires an expression for the in-~
duced moments in terms of the field acting on a mole-
cule of the medium. In most molecular theories of
propagation and scattering one chooses, for the field
acting on the {th dipole, the sum of the external field
and the fields radiated by all dipoles except the ith.
This choice neglects radiation damping. The choice of
“effective” field used here will be that given by Bedeaux
and Mazur’ in their recent work on the dielectric func-
tion of fluids. This choice includes effects of radiation
damping and (more importantly for our purposes) leads
to a more symmetric form of the equations since the
field of the 7th dipole is not excluded. Without going into
the details, which may be found in Ref. 9, the choice
of effective field is defined by

P;(t) = oy Eqe 1 (R; (1), 1) (2.5)
and
E.:(R;(#), 1)

:E()(R,-(t),t)—.]z S HR(O - R;("), £~ ') op, (") dt’.

(2. 6)

Here @, is the polarizability of each molecule, assumed
scalar and frequency independent, and the kernel H is
given by

{F(R,t), |R|>a
HED= Vile®,0-F'® 2], |R|<a.

The quantity a is an effective molecular hard core
diameter and F' is the adjoint of F.

(2.7)

Equations (5) and (6) now lead to an equation for the
polarization of the medium

P(R; t) = OIOP(R, t)(EO(Ra t)
- [HR-R', - t)*P(R', ') d°R' dt"), (2.8)
where

o(R,?) E@ 5(R - R; (1) (2.9)

is the number density.

If we now combine Egs. (3) and (8), we obtain an
equation for E which may be iterated in terms of the
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external field E,. The utility of the resulting series is
somewhat limited since the response of the induced
polarization to the external field is described by a long-
ranged kernel. For a discussion of this point we may
refer to Felderhof, 1® It is therefore preferable to adopt
a different procedure analogous to that used in Ref. 9
and 10 which allows us to express the fluctuating field
E in terms of the average or macroscopic field in the
medium,

We first define the fluctuation of any statistical
quantity f by
af=f-<(f) (2.10)

where the brackets signify a statistical average over
an appropriate ensemble, In particular, we have

Ap(R, t)=; 5(R - R;()) — py(R, 1), @2.11)

where p, is the average number density. Adopting the
shorthand notation x = (R, #) and d*x =d°R d#, we obtain
from Eqs. (2.8) and (2. 10)

AP(x1)= aoAP(xi)Eo(ﬁﬁ) - f)lopo(%i) f H(x1 —xz) °AP(x2)d4x2
- &g2p (x)) [ Hlxg - x3) ° Ply) d'xy

+ay{ap(ry) [ Hx, - x,) e AP(x,) dix,), (2.12)
while from Eq. (2.3) we have
(E(x)) =Eylx)) ~ [ Flry — %) ° Plx,)) d'x, (2.13)
and
AE(x) =— [ F(x; - %) » AP(x,) dix,. (2.14)

Between Egs. (2.12) and (2. 13) we may eliminate the
external field to obtain

S [8(xy = x3) + agpo ()M (xy — x,)] = AP () dx,
= aoAp(xi) f(xi) - doAP(ﬂﬁ) f H(x1 - xz) °AP(X2) d4x2
+aydp(xy) [ Hixg - x)) - AP () d'xy),

(2.15)
where
E b)) =(Elxy)) + [ [Fwy - x) = Hlxg — )] Piy)) i,
(2.16)

is a nonfluctuating field which will be interpreted
shortly,

The object now is to invert the kernel appearing on
the left side of Eq. (2.15) to obtain an expression for
AP which may be iterated in a straightforward manner,
Then with the help of Eq. (2.14) we can obtain an ex-
pression for the fluctuations AE of the electric field in
terms of the density fluctuations Ap, If the fluid medium
is finite in extent, the average density will be constant
inside the medium and zero outside. This makes inver-
sion of the kernel difficult. Therefore, for simplicity,
we shall assume the medium to be statistically homo-
geneous, isotropic and infinite in extent so that p,(x)
=p, is strictly a constant. (We will not discuss any dif-
fraction effects.) To solve Eq. (2.15) we define the
tensor

K(xy - x3) = [ Hixg - 25) = (1 + cxpoW)™ (g — xp) dl,
(2.17)
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and the fluctuating quantities
ulxy) = [ MGy - %) AP () d'x,

and

(2.18)

8(xq, %5) =K xq — xp) @ AP (xy). (2.19)

Then, omitting integration signs, Eq. (2.15) becomes,
after multiplication by K,

u=s*€f-s-u+{s-u), (2.20)
with the solution
u=(1+s)tesE+(1+s)le(s-n). 2.21)

Multiplying this last expression by s and averaging, we
obtain

Seu)=[1-( - @+s)yD]t-(s- (1+s)les) £, (2.22)
and using this in Eq. (2.21) gives
u=[se(1+8)yl-(s-(L+s)DH]-((1+8) 1 &

=alse (1 +s)t]- {1 +s))1-E,

where we have used the fact that {(s)=0,

{2.23)

Defining a kernel K’ by
K’ (v — %) == [ F g = x5) = (1 + gog )2 (g - ) dxcy,
(2.24)

we obtain from Eqs. (2.23), (2.18), and (2. 14) our final
expression for the fluctuations of the electric field

AE=K'-[aap(1 +Ka,ap)t

—aap(l+Kaap) ] {1+ Kaap)yH1-£,  (2.25)
or in compact form
AE=K'Alaap(l+Kayap) il (1 + KaapyhHt-£.
(2.26)

Again, we have omitted integration signs and variables
of integration.

3. DISCUSSION OF THE FIELD FLUCTUATIONS

Let us now discuss the important features of Eq.
(2. 25) for the field fluctuations. We first examine the
field £, Fourier analyzing £, (E), and (P), we obtain
from Eq. (2.16)

E&, w)=(E)K, @)+ [F K, ) - HEK, w)] - (P)(k, w).

Since (E) and (P) are the macroscopic, averaged polari-
zation and electric field, their only Fourier components
will be at w=w, and k| = lnw,/c| where w, is the fre-
quency of the external field and # is the exact refractive
index of the medium (evaluated at wy). As we are con-
cerned with fields of optical wavelengths, we may safe-
ly assume

(3.1)

woa

, |nwea/e] <1, (3.2)

where a is the hard core diameter. Now the tensors F
and H have been evaluated!® with the result

F(k, w) - H(K, w) =% + O((ka)?, (wa/c)?). (3.3)

Thus, for optical fields (or in the limit ¢ —0) we have
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from Eq. (1)
ER, ) =(E)R, 1) +3(P)(R, 1). (3.4)

This is recognized as Lorentz’s expression for the ef-
fective field acting on a molecule of the medium. A
more precise evaluation of & can be made but this hard-
ly appears necessary and we shall henceforth use the
expression (4). Two further points regarding £ deserve
special mention. First, we note that the difference be-
tween the exact expression (2.16) and the approximate
one (3.4) arises solely because the former includes
effects of radiation reaction while the latter does not.
That is, suppose in Eq. (2.6) we had used instead of

H, the dipole kernel F as is customary. ! Then, in
order to eliminate the divergence which arises when
two dipoles are at the same point, it is conventional to
cut out a small spherical domain surrounding the dipole
at R;(#) and take the limit as the diameter of this do-
main shrinks to zero. This procedure leads exactly to
Eq. (3.4) and thus that approximation neglects the radi-
ation reaction. Secondly, the Lorentz effective field is
not the true field acting on a dipole. The true field
[given by Eq. (2.6) in this model] includes effects of
density fluctuations which are absent in Eq. (3.4).
These fluctuations appear explicitly in Eq. (2. 25).

Introducing now the dielectric function €(k, w) of the
medium, we have from Eq. (3.4)

Ek, w) =7k, w) +2) * (B)K, w). (3.5)

We now examine the second term in Eq. (2.25) and
show that in the approximation given by Eq. (3.2) this
term is precisely equal to minus (E). To see this, we
first note that in the limit as Eq. (3.2) holds, we have,
in Fourier transform,

(apap (1 + Kayap)™) < (1 +Kayap)ty?
=3[(e- DEe+2)" - (- 1)(g +2)1],

where

(3.6)

g=(1 +%aop ())(1—%0!000)-1 (8.7

is the Lorenz—Lorentz value of the dielectric function.
We further have, again in the limit of Eq. (3.2),

-2 oo 2):][o- o]

(3.8)

where 7 is a positive, infinitesimal quantity. Now, as-
suming that (E) is purely transverse, i.e., k°(E)K, w)
=0, we will require only the transverse parts of the
tensors € and K’. We write

ek, w) =€, (k, w)(1 - kR + €, (k, w) kk.

Then for the transverse parts of Egs. (3.5), (3.6), and
(3.8) we have, respectively,

(3.9)

3 (€ (B, @) + 2)E) (K, w), (3.5t)
(e, (k, W) = e (e (o, ) +2) (g + 2) 1, (3. 6t)
and
W\ 2 +2) ., (o, NP ™
{= o 4 (= 3.8t
<c> 3 b3 <c +in) & . (3. 81)
Combining these three expressions, we obtain
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=K'+ {eyap (1+ Kaap)™?) - (1 + Kayap) )yt -€
-
= (g) : e (B, w) - ¢p) [k2 - (C2 +i?}) 260] (E)k, w).

(3.10)

Now (E)(k, w) being the average macroscopic field has
Fourier components only at w=w, and k! = lnw,/cl
where the refractive index is defined by

=e, (P2 o
tr ¢ ’ °

At these values, however, expression (3, 10) becomes
simply minus (E) which proves the assertion. The first
term of Eq. (2.25) therefore gives the full field as

E=K’ -0 0p(1 +Kegap) ™t (1 + Kaghoy )y t-E  (3.12)

which may be easily checked by averaging both sides
and using Eq. (3.8) together with the fact that (E) is
transverse.

(3.11)

When the inverse operators in Eq. (3.12) are ex-
panded, we have the obvious interpretation of the field
& propagating from one density fluctuation to the next
via a propagator K and then to the observation point via
a propagator K’. The propagator K is characteristic
of a medium with dielectric function €, i.e., a medium
in which all density fluctuations are absent. As pointed
out in Ref. 9 and 10 this is the first step in the approach
of the statistical theory to the phenomenological theory
in which the propagation is through a medium with the
exact dielectric function of the model. In Sec. 5 of this
paper we will take the next step toward the phenom-
enological theory by assuming a definite distribution for
the density fluctuations—a Gaussian distribution.

It might appear that a simpler, more compact expres-
sion for E could be obtained by evaluating the averaged
terms in Eq. (3.12), i.e.,

{1+ Kagapyht-& (3.13)

in terms of the exact dielectric function of the medium.
This, however, is not possible since expression (3.13)
has a zero at w=w,, |ki=Inw,/c| which is compen-
sated by a pole in the factors which precede it in Eq.
(3.12). Thus, the two factors cannot be separated.
Bearing this in mind, the simplest controlled approxi-
mation which one can make to Eq. (3.12) is to expand
the right-hand side in increasing orders of density fluc-
tuations, Thus we have

E=K'*ayap(l - Kaiap + KaAp * Kaydp

- (KayopKeyap) +=22) £, (3.14)

or

AE=K’[a,8p - AlagApKaap) +o0e]E. (3.15)

4. THE SPECTRAL DENSITY

Let us now compute, at a point within the medium,
the spectral density of one component of the scattered
field. We choose a unit vector #, along the ath direction
and compute the spectrum of %, ° AE. If we cbserve at
points for which (E)# 0, we would have to include also
the spectrum of #, °{E). This, however, will have com-
ponents only at w=w.
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The spectrum is defined by
(i * AE(Ry, w) 12y
T b

G, (Ry, w) =lim 4.1)
where, as usual, ! the fields AE(R, #) are assumed to
be truncated for times |#] > T/2. It is evident from the
form of Eqs. (4.1) and (3. 15) that the spectrum depends
on the form of the n-point space—time correlation func-
tions of the density fluctuations for all n =2,

To lowest order approximation the spectrum is ob-
tained by retaining only the term in Eq. (3.15) with a
single density fluctuation. We thus have

Ga (Ry, @) = lim Ta} [ d°R,d°R, dt, dt, expliw(t, — 1,)]

[ty * K“(Rg - Ry, ) * E(Ry, 1))
X2ty * K’ (R~ Rp, ) * (R, )80 Ry, 1) (Re, 1)),
(4.2)

Now suppose that the external field is a narrow, well
collimated monochromatic beam of the form

EyR, )= Eqcos(ky* R- wyf + ¢).

Neglecting diffraction effects at the boundary of the
scattering medium, the average field in the medium will
again be narrow and monochromatic with frequency w.
In general the average field will also be attenuated in
the direction of propagation. The spectrum given by

Eq. (4.1) thus depends on the depth in the medium at
which it is observed. In order to avoid this complication
(see, however, Ref. 10), we will consider only the case
in which the imaginary part of the refractive index is
negligibly small and thus attenuation may be neglected
at any finite depth in the medium. Under these condi-
tions, the average field in the medium will be given by

(E(R, 1)) =Acosg(wy)k,* R— wif + ¢,), (4. 4)

(4. 3)

where np(wy) is the real part of the refractive index of
the medium at frequency w; and A is the real, constant
amplitude of the average field. [If refraction at the
boundary is considered, the wavevector will have mag-
nitude ny(wy) k| and direction determined by the
Fresnel refraction formulas.]

The integration points Ry and R, in Eq. (4.1) are re-
stricted to the domain where & is nonzero, i.e., to
the narrow region in which the average field, Eq. (4),
is nonzero. The points Ry and R, are further restricted
by the following consideration. In an experimental situ-
ation, the field AE is detected by a device (system of
lenses, etc.) which is so designed as to receive only
those spatial Fourier components (of the radiation ar-
riving at Ry) whose wavevectors lie within a small cone
of solid angle 0, Within the limits of geometrical op-
tics, this is equivalent to restricting the integration
point Ry (or Rz) to lie within this cone. !’ These two con-
siderations thus restrict Ry and R, to lie within a small
domain which is the intersection of the cone of observa-
tion and the region occupied by the average field. Let
this domain be centered at the origin of coordinates and
have volume V.

If we take the observation point Ry far from the origin

so that IR;1> IRy!, IRy| (for all Ry, Ry& V), the kernel
K’ is easily approximated as
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K’ (Ry— Ry, ©) = (_62;_2) (Cf) " @rR)( - BBy

X exp (ino—ccho—inocgﬁo"R,) (4. 5)
where n, =e(1,/ %, We define the dynamic structure factor
of the medium by

5(a, @) = [ d®Rdt exp(- iq - R+iQi){ap(R, DAp(R' =0, #' =0)).

(4.6)

Finally, if we again assume that absorption in the
medium is negligible, we obtain from Egs. (4.4) and
(3.5)

ER, t):kl—gi(—%l)i—z—] Acos[ng(w)ky R wet+ ¢, (4.7)

Now combining Egs. (4.4), (4.5), and (4.7) with (4. 1)
and remembering the restrictions on Ry and R,, we
have after a simple integration

Gct (RO’ w)

[ (6 +2) (h(wy) +2) (W) ? @, ° (1- RyR) " A]?
 [o (a2 bl D () © B G

Xg [S (no _C“l Ry—ng(wy) ko, w - "-’0)

+8 <nocgﬁo+nR(w0)ko,w+wo>] , (4.8)
where we have omitted a term proportional to 8(wg). In
this expression, the factor w! is well known. The ap-
pearance of two structure factors at the sum and dif-
ference frequencies is a result of using a real average
field and insures that the spectrum is an even function
of w as required by its definition. The spectrum is
completely polarized with AE lying in the plane formed
by R, and A. Summing over the components «=1,2, 3,
we obtain the usual angular dependence

2 it - R,Ry) * A=A’ sin%e, (4.9)

where 6 is the angle between R, and A.

The factors involving €; and ny are of interest in com-
parison of the statistical theory with phenomenological
results. This has been discussed recently by
Felderhof!? in the case of elastic scattering and our ex-
pression is the extension of his to the inelastic case. To
see this, we approximate ng(w,) by the Lorenz—Lorentz
value of the refractive index n;. We then have

(o0 o2 Lo r2)) * (25"

(4.10)
giving

(¥ 4(360/300)2 2 s 2
Z“)Ga(RO’w) (C) —WRQZ Af sin“0

xg{s (no[gﬁo—ko},w—w()
+S<n0[cgﬁ0+k0:| s w+w0>} .

The total, time averaged, intensity scattered to a point
R, is obtained by the usual formula

(4.11)
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IR)=T"1 [ dt(|AE(Ry, 1)|?)
dw
=f 57 ZOL; Ge, (R, w).
The two structure factors will be appreciable only in

the vicinity of w =+ w,. This allows us to replace w* by
w}§ in the integrations., We then have, e.g.,

dw w 2
[ ﬁs<n0 I:Z R04=k0] ,w;wo)
:f &Rt 6<t—n0 R°C'R) (ap(R, 1) Ap(0, 0))
X exp[+ i (ngky * R— wyt)]

:f &R <Ap (R,t:no é"c'—f—{—) ap(0, 0)>

Xexp[iino? (ﬁo—éu)-R] .

4.12)

(4.13)

Since the integration point R is confined to a small
volume element, the time #=#n4R,* R/c is essentially
zero, so that Eq. (4.13) becomes

[ d°R exp [:t ing % (k, - Ro) * R] {Ap(R, 0) Ap(0, 0))

WO o~ A
=S (no _C_O (ko — Ro)) 5 (4.14)
where § is the static structure factor. Combining
these results with Eq. (11), we have

4 2 N N
I(Ry) = <%ﬂ> (26—0) (4TR,) VI, sin%0 § <n0 “ 3, - R0)>
Py c

(4.15)

where I; is the time average intensity of the average
field. This is precisely the result of Felderhof'® and
agrees with the phenomenological theory in this order
of approximation,

The important features of Eqs. (4.8) and (4. 15) are
the dependence of the amplitude on the dielectric con-
stant (which is difficult to measure) and the dependence
of the structure factors on the refractive index (which
is experimentally accessible). In the phenomenological
approach, these dependences are inserted in an “ad hoe”
manner and the above equations provide the justification
for this procedure.

5. A GAUSSIAN MODEL

In the previous sections we have seen that it is possi-
ble to describe the propagation of the electric field or
its fluctuations as a propagation from one density fluc-
tuation to the next thru a medium characterized by the
Lorenz—Lorentz value of the dielectric function. The
spectral density, in lowest order, then depends in a
natural way on this approximate dielectric function.

It appears reasonable that further rearrangement and
resummation of the basic equations (3. 14) and (3. 15)
will lead to a spectrum of the same form but with an
improved value of the refractive index replacing ny. As
the true refractive index depends on all orders of cor-
relation functions of the density fluctuations, the next
step would be to retain only the two point correlation
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FIG. 1. Diagrams contributing to the spectrum through fourth
order in Ap,

function. It would be still better to have reasonable ap-
proximations to the higher order correlation functions
which would lead to tractable equations. For this pur-
pose, we will adopt a model for the medium in which the
density fluctuations have Gaussian distribution with
mean value zero and covariance equal to the exact dy-
namic structure factor S. This approximation becomes
exact when the fluctuations are separated into pairs in
such a way that each pair is far from every other pair.
The approximation is defined by

n 0, n odd
na =
<i=1 P (x’)> 22 T {ap(x)aplx;) n even,
(pairs)
where the sum extends over all decompositions of the
n indices x4, ..., %, into #/2 unordered pairs.

(5.1)

Suppose now that we use the definition (4.1) of the
spectral density and insert into it Eq. (2.25) for the
field fluctuations. After expanding in orders of &Ap and
carrying out the averages by means of Eq. (5.1), the
resulting spectrum can be represented by means of a
diagrammatic series. For example, through fourth
order in density fluctuations the diagrams are shown
in Fig, 1. The elements of the diagrams are as follows.
A wavy line connecting points » and Z (called and S-bond)
represents a} {(4p(x,) Ap(x;)). A straight line connecting
points » and [ (called a K-bond) represents K(x, - x;).
The uppermost line, originating at a point m, repre-
sents #, " (R, - R,,, w) exp(iwt,), while the lowermost
line, terminating at point 1(or 1’), represents 6(x1)o
The points are connected in pairs by S-bonds in all pos-
sible ways with two restrictions: (a) there must be at
least one S-bond connecting the two lines; and (b) it must

FIG, 2. Diagrams which violate condition ®).
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must not be possible to cause the diagram to become
disconnected by cutting a K-bond at any point below the
lowest S-bond connecting the two lines. This is illu-
strated in Fig. 2, where cutting the K-bonds labelled
m,n would violate this condition. All terms in the sum
of graphs are taken as positive.

We now consider all graphs which contain exactly one
S-bond connecting the two lines. This constitutes the
“gsingle scattering” approximation. These graphs fall
into four classes, examples of which are shown in Fig.
3. In class Cy, the S-bonds neither overlap nor cross
each other. This class can be summed by simple con-
volution techniques. In class C,, which includes class
G, the S-bonds do not cross but may overlap. Class Cy,
which includes C, and C,, contains all possible S-bonds
which do not cross the one S-bond connecting the two
lines. Classes C4, C,, and C,; are simply renormaliza-
tions of the K-bonds with C; leading to the completely
renormalized K-bond, i.e., the exact propagator for the
Gaussian model. Class C,, in which at least one S-bond
crosses the S-bond connecting the two lines, may be
thought of as corresponding to frequency dependent re-
normalization of the elementary vertex .

The analysis can be extended to graphs which include
two or more S-bonds connecting the two lines. These
graphs will have as basic elements the renormalized
K-bonds and vertices of the single scattering approxi-
mation. The essentially new feature will be the simul-
taneous renormalization of two or more vertices,

6. RENORMALIZATION OF THE SPECTRUM

Let us now examine the renormalization of the spec-
tral density which arises from taking into account the
diagrams of class C; of Fig. 3. We use Eq. (2.25) in
Eg. (4.1), expand in orders of Ap and take the average
retaining only class C; diagrams. We then obtain

2
G, (Ry, w):lTim % f dlxy o+ d'xy expliw(ty - #])

X[ﬁa ‘K'(Ry- Ry, w)* lb(xx - xz) °€(xz)]
X[fiy + K (Ro— R, @) »P(xf - x5) o & () ]*

X{Ap(xy) Ap (x3)). (6.1)

Here, the new tensor § is defined by

HHH

FIG. 3. The four classes of diagrams in single scattering
approximation.
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Pk, w) ={(1+ e 8pK) g (k, w)
=((1 + a,¥ap) )5 (k, w), (6.2)

and the subscript G indicates that the average is taken
according to the Gaussian prescription given by Eg.
(5.1).

If we choose for € a complex field and again neglect
attenuation, we may write
(1R (wy) + 2]
3

ER, )= A expling () ko * R - iwt]. (6.3)

The integrations on time and the intermediate space
points may be carried out giving

X explilq + ng (we)k, ]+ (R, ~ R}

X ﬁa 'T,(RO_ R’Z: 0)) 'A]

x [ﬁa ° T'(RO - R‘é: w) °A]* S(q’ w - ‘-"0), (6- 4)
where T/(R, w) is the Fourier transform of
T/ (k, w) =K’ (k, w) ° Pk, w). (6.5)

In order to carry out the final integration in Eq. (6.4)
Wwe require an explicit expression for T/, Whatever this
expression, isotropy requires

T' (K, w) = T (B, 0)(1 - BR) + T (k, w) BF, (6. 6)

where Tfr and T; depend only on the magnitude of k and
on w, The Fourier transform is then given by

1 9 5, SinkR
—2777] Brdk —5— %R

b

T (R, w)= [T].(k, w)(1 - RR)

+ T4 (R, w)RR]+O<I;2> . 6.7)

Since the integration points R, and Rj are restricted to

a small region around the origin, we may ignore terms
of order |Ry—R,!™%, set IR;— R,!~R,; in the denominator
and also set (Rg~ R,)/IRo~ R,/ ~R,. Since the component
of the far field parallel to R, is zero, only the term in-
volving Ti. survives. Thus, we obtain

agluy * Al [nR(w0)+2])

Ga Ry, @) =775 ( 41R,

f AR, d°R} d°q f kdk f K dk’

X eXp[i(q + 715, (wg) ko) *(Ry - Rz)]
T1.(k, w) TIE (%', w) sin(2| Ry— Ry |)
Xsin(k’ | Ry - R§|) S(@, @ — wg).

To evatuate 74,, we return to Eq. (3.6) and write

{6.8)

3e-1(Ee+2)1=y=qap,
+ (e pAp (L + M ap) 1) « (1 + Ka ap)1H,
(6.9)
Multiplying this equation by ¥, we easily find

(A +Heaap)yH=[1+K<(¥-apylt (6. 10)

If we make the Gaussian approximation to the averages
in Eq. (6.9), then Eq. (6.10) becomes
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(1 +Kaap)He=9=[1+K=(¥s - a,p,) ] (6.11)

We now decompose the tensors K, K’, and ¥ into their
transverse and longitudinal parts. In the limit as the
hard core diameter becomes zerc, we may use!®

N 2
oo [ v (enl2) )
€ c
(£ ) 2e B
¢ ") &
together with Eq. (3.8) to obtain
€t 2f w)? w . \? 1+
_G.t3r__ (;> [k2_<;+zn> eG,tr} (6.13)

where €g ;. is the Gaussian approximation to the trans-
verse part of the dielectric tensor,

(6.12)

Ti.(k, w)=

Now, to evaluate the integrals in Eq. (6.8), we ob-
serve that the singularities of the integrand occur at
the points 2=+ f(w) where f(w) is the solution of

£=2 leo,elfs @12 (6. 14)
and thus
flw)=~= nc,(w) (6. 15)

where nc,(w) is the refractive index (in Gaussian approx-
imation) at frequency w. Therefore, using this in Eq.
(6. 8) and carrying outf the integrations, we have

iy, Al [ (wg) +2] [nh(w) +2] <g) 2) 2
C

Ga (Roy @) = ( 4R, 3 3

xvs(cfne(w)ﬁo—nn(wo)ko,w—wo) . (6.18)

Comparing this with Eq. (4.8) (except for the use of a
complex field here) we see that the two expressions
differ only in that ng replaces n; everywhere. Thus our
approximate calculation with the Gaussian model leads,
in accordance with the phenomenological theory, to the
same spectrum, but with an improved value of the re-
fractive index.

It should be clear that the main feature of the
Gaussian approximation is that it enables us to split
the correlation between the two fields from the corre-
lations which occur within each field separately, Had
we not made Gaussian approximation but, instead,
arbitrarily split these correlations, then all the formu-
las of this section would hold but without the subscript
G. In particular, in Eg. (16), the exact refractive in-
dex replaces ng.

APPENDIX

In this appendix, we discuss briefly some uncom-
pleted work on the vertex renormalization of the
Gaussian model,

In the “single scattering approximation”, the two
fields which form the spectrum will be connected by
only one S-bond. This means that we may average each
of the two fields separately provided we hold one den-
sity fluctuation fixed. This fluctuation will than be aver-
aged last with the corresponding fluctuation from the
other field, Let us denote the average of AE with one
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~
fluctuation fixed by AE. Expanding the expression Eq.
(2. 25) for AE and averaging with one fluctuation fixed,
we may write AE in either of three ways:

gf}(xo)
=ay [ T'(x = x1)* Vxg, x5, x3) + E () Bp (x,) dixy o+ « - Ay,
(A1)
or
BE(x,)
=y [ Ulxg, %4, 2) * € () Bp(y) iy d'xy, (a2)
or
ﬁ(xo)
=g | W, %y, BN + @ Kap) ) i, - x)
<& (xy) Ap(xy) dxy = = o dixs. (A3)
In Eq. (A.1), the tensor V is defined by
V(xy, X9, X3)
={(1+ a0pK) (g, x) (1 + aBAP) g, 2306, . (A4)

The average is a Gaussian average. The subscript L in-
dicates that only linked diagrams are counted. That is,
in the diagram series for V we discard all diagrams
which would become disconnected if any K-bond were
cut, Note that the order of Ap and K is reversed in the
two factors constituting V. This form of AE is the most
convenient for calculations because it clearly separates
the vertex correction, According to (1), the effective
field £ undergoes a vertex modification and then propa-
gates to the observation point via the propagator T’
which we have shown is characteristic of the Gaunssian
medium. The first term in the expansion of V is simply
8{x{ — %,) 8(x, — x5} [which leads immediately to the spec-
trum given by Eq. (6.1)], while the next few terms are
shown in Fig. 4.

In Eq. (A2), the tensor U is defined by
U(xy, 24, 27)
= ((K[1 + etgApK ™) (x4, 2,) (1 + 01gKAP) ™ (11, ), 10
(A5)

Here the subscript L’ indicates that the diagrams are
partially linked in that it must not be possible to cause
the diagrams to become disconnected by cutting a K-
bond between the points x, and x,. Finally, in Eq. (A3),
the tensor W is given by

W(xo, X1 xz) = <(K'[1 + aOApK]-i)(xO; xi)(l + aOKAp)-i(}Ci! x2)>G!

(A6)

where the diagrams may be either linked or unlinked.
Clearly, we have the relations
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U(XO, xi, xz) = f d4y T’(xo -_ y) . V(y, X1 xz)
= [ d'yW(xg, xq, V(1 + e, KAPY D™ (3 - x,).
(A7)

The spectrum can be written formally by using either
Eq. (Al), (A2) or (A3), e.g.,

GalRo @) =lim % f12, T (Ro= B, )+ Viay, 15, 29+ )

X [ty * T(Ro = R}, w) * V(xf, x5, x5) * E () I*
X expliw(ty — 1) 1{Ap(x,) Ap(x7)) dixy » -~ d'x3.

Further evaluation depends upon making specific ap-
proximations to the tensor V and is quite difficult.

(A8)

Without doing an explicit evaluation we would like to
indicate the procedure which should bring Eq. (A8) into
line with the phenomenological theory. If one writes
the coordinate representation of the tensor ¥ [ Eg. (6. 9)]
in Gaussian approximation and takes the functional
derivative of that expression with respect to Ap(y) [or
what amounts to the same thing, with respect to p(y)],
one has the result

3
300y Yaleg — x3) = &) V(xy, 9, %3).

(a9)
Now, since ¥ is simply related to the dielectric tensor
via Eq. (6.9), the vertex part V can be related to the
functional derivative of the dielectric tensor. In this
manner, one should be able to express the spectrum

in single scattering approximation in terms of the dy-
namic structure factor and the functional derivative

of the dielectric tensor. This would be the appropriate
generalization of the factor 9¢/9p which appears in the
phenomenological result.

Finally, let us indicate the general calculation of
the spectrum in single scattering approximation in
terms of the vertex function V. As the required inte-
grals are difficult to perform rigorously, we shall ar-
bitrarily restrict the spatial integrals to a small volume
around the origin and take R; in the far zone. We can
then write for the transverse part of T’, following the
calculation of the previous section,

T/(Ry- Ry, 0= o ___"5(‘*’)”(9’.)2

4R, 3 c
. w 5 5 5
X exp [mc,(w) = (Ry-Ry* R‘l)] (1-RyRy).
(A10)
In 4-vector notation, we will write the Fourier trans-

form of V as

1 .
V{xs, x5, %3) = P f expli(fyx, + kyxy + kyx;)]

XV, by, ks) Al o < dk;y. (A11)
Then, using Eq. (6.3) for & and the notation
¥ = a0, 1= (10 £ R, o), ()

we can carry out the integrals in Eq. (A8) to obtain

Gy (Ry, )
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o1 [ ey [nE(w)+2] [Mh(w) +2] [ w)2]?
*%Ti[méo 3 3 (‘5”

X @,l,—yf | i = V(B - g, — 1) « A|2S(q) d*q. (A13)

In order to check this result, we may use the zeroth
order approximation to V, i.e.,

VO = By — x,) 8(x, — x3).
We then obtain for the Fourier transform
VOt g, - k) = [ expl- ik ~ g - £%) ~x]d'x. (A15)

Thus, for the square of the transform which appears in
Eq. (A13), we can write

(A14)

|iiy -V A|2= Iﬁa°A|2fexp[-—i(k“‘—q—ki")'(x—y)]d4xd4y

= (277)4 lﬁm .A\2 VTG(q - Jpout _ kin)).
(A16)

We thus recover the previous result, Eq. (6.16) exactly.

In the more general case, conservation of the “4-mo-
mentum” in the vertex part requires that

V(" - q, - B =20  vg) 8(g - (&° - E*)),

Using the same procedure as in Eq. (A16) for the
square of the delta function, Eq. (A13) becomes

a, ni(w)+2 nh(wy)+2 fw\ ? 2
Ga(Roy ) = [47:1%0 G(s R(:g (Z)

x V|ﬁa,v(kout _ kin) o A|2 S(kout _ kin),

(A17)

(A18)
which is the general result in single scattering
approximation,

Note added in proof: Since the completion of this re-
search, the authors learned of recent work along simi-
lar lines by Boots, Bedeaux, and Mazur, !’ The reader
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is referred to this paper for a comparison of techniques
and results.

*Based on a dissertation submitted by V.V. to the Department
of Physics, University of Illinois at Chicago Circle,
November 1974.
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Construction of quantum fields from Euclidean tensor fields
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We define Fuclidean tensor fields over S(IR"), from which we construct quantum tensor fields satisfying all
the Wightman axioms except the uniqueness of the vacuum. By a process of reduction, it is possible to
obtain, from some suitably chosen Euclidean tensor field, a quantum field satisfying all the Wightman
axioms except the uniqueness of the vacuum and transforming according to any arbitrarily chosen one-
valued finite-dimensional irreducible representation of the restricted Lorentz group L!. We give a
Euclidean vector field and a Euclidean tensor field of rank two as examples, leading respectively to the real
Proca Wightman field and the free electromagnetic Wightman field.

I. INTRODUCTION

In Ref. 1, Osterwalder and Schrader give a set of
necessary and sufficient conditions on Euclidean Green’s
functions in order that they define a unique Wightman
theory of some arbitrary spinor field. In Ref. 2,
Nelson defines Euclidean scalar fields over S(R?), for
d = 2, and show that, under certain hermiticity, inte-
grability, and continuity conditions, they lead to scalar
quantum fields in d-dimensional space—time satisfying
all the Wightman axioms except the uniqueness of the
vacuum, assuming a result of Ref. 1. In Ref. 3, a
Euclidean covariant (in the sense that the expectation
values of the fields are Euclidean covariant) Markov
vector random field over /) (R*) is found which leads to
the real Proca Wightman field. Here we extend the no-
tion of the Euclidean fields of Nelson from the scalar
case to tensor cases, for the case of four-dimensional
space—time. We find that these Euclidean tensor fields,
which are Euclidean covariant (defined in terms of a rep-
resentation of the full Euclidean group on a probability
space by automorphisms of the measure algebra) tensor
random fields over §(R?) satisfying a Markov property
and a reflection principle, lead to, under certain her-
miticity, integrability, continuity, and growth condi-
tions, quantum tensor fields satisfying all the Wightman
axioms except the uniqueness of the vacuum. In Secs.

II and IIT we shall define Euclidean tensor fields and
give the proof of the above statement (again using a re-
sult of Ref. 1). In Sec. IV, we shall consider a reduc-
tion procedure whereby quantum fields satisfying all the
Wightman axioms except the uniqueness of the vacuum
and transforming according to any arbitrary one-valued
finite-dimensional irreducible representation of the re-
stricted Lorentz group L] are obtained. In Sec. V we
give examples of Euclidean tensor fields of rank one and
two, respectively,

1l. EUCLIDEAN TENSOR FIELDS

A Euclidean covariant /th rank tensor random field
over S(IR*) is a collection of random variables
b, "-“z(ﬂ on a probability space (2,4, 1) [we assume
that A is the smallest o-algebra with respect to which all
®, .... (f) are measurable] indexed by [ indices u,=0,1,
2,3, 421, ... ,1, and by the elements of §(IR?), such
that qbul»--u,(ﬂ is linear and such that ¢ou1,_w (f,)
—~¢, e, in measure if f, =~ f in the usual ltopology of
S(RY, arid such that there is a representation 7 of the
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full Euclidean group on IR? on the underlying probability
space® such that

.“z(ﬂ

3
= Z) A-l ..
oev 50 H1¥1

Y1

7-(a"(é’)(l)“l..

) ALII,,I ¢V1'°"’l (f(a,A))

where T(a,A) is the representative of the element (a,A)
of the full Euclidean group in the representation 7, with
a being a translation and A a rotation [ defined here as

an arbitrary element of 0(4)], and f,, 4, is given by

f(a,A)(X) =flAMx-a), x= (Xcoys X 1r» X2y 5 X(3)) € RY.

If we write () for the set ¢u1=-=u,(ﬂ’ ©,=0,1,2,3,
i=1,...1, where ¢, ..., (/) is called the y, -y, com-
ponent of &(f), and if we define an operator T(a,A) on

&(f) as

T, 02N}, ...
3
= V1°§1=0 A:LIIVI e Al-Llll/l ‘¢u1uuy1(f(a,A)),

then the above statement of Euclidean covariance can be
written as

T(a, A)e ()= T{a,A)e (/)
with

(@, AN}y v = 7@, )y (.
In particular, if we let (p)=(0,A4,) with
-1000
0 100
0 010
0 001

A =

P

then
1
{TO® (N yeres, = (- D2 Bi0g ().

We now define an Euclidean covariant Markov tensor
random field of rank I over S{R*). We let // be an open
set in R, and we let o((/) be the o-algebra generated by
the random variables ¢, ..., (/) with x,=0,1,2,3, ¢
=1,...1, and supp fcd. For any arbitrary subset [/
of R* we define o{//)="0 o({/) with the intersection taken
over all open sets containing [/. Then an Euclidean co-
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variant tensor random field (/) of rank [ is called
Markov if

E(u | U(U')):E(u| o(all))

where E( | ) denotes conditional expectation, {/* is the
complement of {/, and 3(/ the boundary of {/, for all
positive random variables « measurable with respect to

o(lh).

The Euclidean covariant tensor random field & (/) is
said to satisfy the reflection principle if

{phu=u

for any « belonging to L*(, ¢, ), where 0,= o(IR%),
with IR’ being the hyperplane x,,,=0. We have
13

TO)Pprn (A= (= DFsm00 (1),

We now define an Euclidean tensor field of rank [
over S(IRY) to be an Euclidean covariant Markov tensor
random field of rank [ over §(IR*) satisfying the above
reflection principle. We further introduce the following
assumptions:

(1) ®(/) is Hermitian, i.e., ®(/) is real when fis
real.

(ii) For all fe S(RY), ¢,,...,,
and for ©;=0,1,2,3, i=1, ..
mapping

fi® o2 fTEG (i) ¢y ()

is separately continuous, where each 2, is a set of in-
dices j4; *** U,, and further we have

(Nisin L' for 1 sp<e
., I, and the

|E¢, (7)o ¢y (f)] <ciln!)e nl 17,1,

where ¢, and ¢, are some positive numbers and

IFll,= sup |(1+ x*)s/2DAx) |
xElR4
lalss

for some positive integer s.

We note that (i) guarantees that &*(f)=&(f*) for all
fe S(RY.

We now define a Schwinger field () with components
<5ulmu,(ﬂ defined by

1

Fupeera (D= (= VT T’ g, L, ().

Assumption (ii) guarantees that there exists a
tempered distribution §, ..., on R* such that

EG, (f) b, ()
= [ s [dxy v e dx, Sppeeeng s - o - s alx) oo f (x ).
We further define S,=1.

We now claim that the sequence of distributions S,
S, ..., satisfies the axioms (E0”)—(E3) of Ref. 1 for
ar]bitr"ary spinor fields and hence leads to a theory of
quantum tensor fields satisfying all the Wightman axioms
except the uniqueness of the vacuum.
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I1l. CONSTRUCTION OF QUANTUM TENSOR FIELDS

We now show that the sequence of distributions S,
Sy,eemr,s Satisfies the axioms (E0”)- (E3) of Ref. 1 for
arbitrary spinor fields. First we note that (E0”) is
satisfied by assumption.

To show that (E1) is satisfied, we note that for R
€ S0(4), the maxirix A(U, V) of {1] satisfies

A(U, V)= PRP!

where
-v-1000
P 0 100
0 010
0 001

Hence we have
AU, V)= PR P,

If we let A(U™!, V-1)! be the direct product of A(U™,
V-1) with itself, taken [ times, and if we define P!,
(RMY, (P')! in a similar way, then we have

MU, VY = PYRTH(PY.
We have
and
T(a:R)(I;x(ﬂ =2 (Ao, V_l)l)n' g?))‘, (f(c,R) ).
)‘}
Consequently, we have
r(a, RN, (£) =+ ¢, ()}

= (AU, vh)h)
Y

A

e (BT Vhl)l)w%’

-~

‘z’xi(f(a,m) tee ¢":.(f(“'m)
and therefore
len-x,,(xu cey X))

— 2 (A(U-l, V—l)l))‘l)‘i “ne {A(U-l, V-l)l)

Aleeohs Anh
1 n

XSyt (R1y+a, ..., Rx,*+a).

To show that {E2) is satisfied, it is sufficient to show
that the following inequality

N
7 X =
n.Z;::O )L% S)‘l'")‘nxl""‘m(ef"')‘l"‘)'n fm"‘l"'xm) 0

(here f,=1) where
(©F s ppeein,) (s - -

with

- 7xn):f,,,)‘1...x"(9xly ey ex")
bx = (= X0y, X1y s X2 5 X(ay)
is satisfied for

fn,n---l,,(xls L | xn) :fnl.xl(xl) ot .fnn,kn(xn) ’
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where
IRNCAS S(®R*) and =0 unless x; > 0.
To prove the above inequality we proceed as follows.
We define

N
& :E ;’ ‘ixl(fnun) Tt ¢ln(f""'ln).

n=0
(Here the empty product is by convention 1.) Then we
have

N
_:Z}Z(m 1_1”0‘1)0"‘(\/_1) j=1 ul().)o
n=0 A

X ¢11(f"1,11) bl ¢)’n(f""7)‘n)

using hermiticity of (/). Consequently, we have

N -~ =
7 P)&anjo ; ¢’x1(efn1,>.1)' ¢

* $ln(efnn,).,,)
with

(ef,,l,n)(x)=f,,1,xl(9x), ete. .
Hence we have

E((7(p)a)a)

S’"l""‘nxj,'"Xm(ef"v)‘],“'ln Xfm,xl “oe xm)-

Following Nelson,? we have, using Euclidean co-
variance, Markov property, reflection property, and
assumption (ii), the relation

E((r(p)a)a)=0.

Hence (E2) is proven. (E3) follows from the commuta-
tivity of random variables. We note that the quantum
tensor field constructed from the Wightman distributions
obtained as analytic continuations of the distributions

Soy Sypeeer 2 transform according to the tensor represen-
tation A(Y Y)!, i.e., the direct product of the represen-
tation A(Y, V) taken l times, of the restricted Lorentz
group L], where Y is one of the two SL(2C) elements
corresponding to a given element of L],

1V. REDUCTION

We now introduce a natural ordering in the set of
tensor indices H; *+* u,. Let py+-~ i, and uf - i be
two such tensor indices. We call (py «*+ 1)) > (1] =+ )
if starting from the left, the first unequal subindices y;
and uj is such that y, > u]. We can then put the set of
indices u, -, into one-to-one correspondence with the
set of integers j=1,2, .. .,4%, with the integer j cor-
responding to the tensor index u;* - i, being greater
than the integer j’ corresponding to the tensor index
g ees ph 1 {pg oee ) > (g oo e wh).

Now since R! is the direct product taken I times of
the element R of SO(4), there exists a real 47 X4’ non-
singular matrix W which fully reduces R’ to one-valued
finite-dimensional irreducible representations M'#! ;
=1,...,p, of SO(4), i.e.,

?

WRIWl=2]
i=1

MUz g,
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We define

Q,(N= E @ ()

and defmmg Q(/) to be a column vector with components
Q,(f) and (/) to be a column vector with components
¢ f), we have

MQ( A= WERVE(f.

If we define
M=PM(P),
W = Ptw(pPt)!
QN =P,
e(N=Pe(N,

we obtain
(a, RGN = T(a; AAWE ()= MQ(fg m),
since

(e, R)® (/)= (R

W is not real. However,
quasidiagonal matrix

N (fig,r)-

it is possible to choose a

B :é EBB[il
i=1
with B! nonsingular and of the same order as M,
such that W =BW is real and
’
M= BaB =2 @t

i=1

with
MU B[”M“'B’“ -1
Defining
QN =B,
we have

T(Q,R)@(ﬂZM"IQA(f(a,R))'
We also have
WA, V) W= A,
and
W AU, VY W= At
We note that

Frtir— guileptite-tglin™?

where C is a nonsingular submatrix of P*, and that M
is a one-valued finite-dimensional irreducible represen-
tation of SO(4) equivalent to M1,

Q(f) splits up into parts QU N, i=1,..., p, eachof
which has its components transformed into a linear com-
bination of its components under the action of M. Thus
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(Mé(ﬂ)[ilyzsz M[“”Q[”(f)ﬁz (JAVI“‘Q“‘(f))y.

We now assert that a quantum field satisfying all the
Wightman axioms except the uniqueness of the vacuum

can be constructed from the field Q')(y), i=1, ..., p.
We define
S[““Il-.-yn(fly [ 5f,,):EQ[“-yl(f1)' "Q[“,n(f"),

stil=1,

Then the sequence of distributions S'1}, s'] | v, Satis-
fies the axioms (E0”) - (E3) of Ref. 1 for arbltrary
spinor fields. Again (E0”) is satisfied as can be easily
seen. (E1) is satisfied since we have

Ha, RGN H= MU QUI( £ o)

and
(e, RIQHL ()= QU3 ()}
= 25 M“l'l M“‘ Q‘ (fl(a,R) Q (fn(a,R))'

Taking expectation values and noting that T(a,R) is
measure preserving, we have

SYli Gy o)

Ol i "
= L-e M;im(U

Byy000by

1’ V-l) cen lw[ilsn(u-l, V—l)

Xslgl_,,ﬁn(Rx1+a, ...y Rx,ta),
which is E(1) of Ref. 1 for arbitrary spinor fields.

To show that (E2) is satisfied, we put

N
o= ?;/ Q[ (fnl,rl)...z\-)[:':'(fnn’ 7/n)'
K .
=2 IR A -[Wé(fm,ynﬂ‘:,‘,-

n

(Here again the empty product is by convention 1.) Then
we have

x N —_— - » o
()= 21 LQUNET,,, ) * ++Q4NeF,,, )
n=0 7 n n
Consequently, we have (where, again, fo=1)

N

X

2 Sy e OFrprenars Frssyons)

n,m=0 7,5

=E((1(p)a)a) =0,
where

Fairgeosr, s+ o oy x) =y () =0
with

fm.,,i(xi) e S(IR*) and =0 unless %, 0

.frm,‘/"(xn) ’

Hence, by the same reasoning as before, (E2) is satis-
fied. (E3) is satisfied since Q!!!() are random vari-
ables. Hence we get a quantum field theory satisfying all
the Wightman axioms except the uniqueness of the vacu-
um, from the random field QU1 ) over S(RY), for each
i=1,...,p.

Now any of the one-valued finite-dimensional ir-
reducible representations of S0(4) [i.e., any of the
[)is® class of SO(4) with j,k = 0 and both integral or half-
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integral] is equivalent to some M!#! obtained in the com-
plete reduction of a tensor representation R? of SO(4)
with suitable I, and conversely, any M!!! obtained in

the complete reduction of any tensor representation R’
of SO(4) is equivalent to some one-valued finite-dimen-
sional irreducible representation of SO(4). According to
Ref. 1, the quantum field constructed from Q“‘(f)
transforms according to some one-valued finite-dimen-
sional irreducible representation of the restricted
Lorentz group L} (i.e., equivalent to Ji+* of L] with j,k
=0 and both mtegral or half-integral). Further, by this
process of reduction, we always get a field Q“‘(ﬂ which
gives rise to a quantum field satisfying all the Wightman
axioms except the uniqueness of the vacuum and trans-
forming according to some arbitrary one-valued finite-
dimensional irreducible representation of the restricted
Lorentz group L,.

V. EXAMPLES

A. A Euclidean vector field

We consider the vector random field &( f) over S(RY)
obtained by extension of the Gaussian vector random
field ®(f) over S, (IR*), the space of real elements of
S(R?), defined by

E({bu(ﬂ: 0,
E¢,(Ne,(g)= <f’ g> Lmh

where ¢,(f) and ¢,(g) are the components of &(f) and
&(g), respectively, with p,»=0,1,2,3, and where A is
the four-dimensional Laplacian operator and {
is the scalar product in L*(IR?).

8, —(1/m»2.2,
- A+m?

» JL2w?h)

The vector random field &(f) over §(R*) can be shown
to be Markov in a way exactly parallel to what is done
in Ref. 3. Further, assumptions (i) and (ii) of Sec. II
are satisfied as a consequence respectively of the Gaus-
sian nature of the field when restricted to §,(R*) and of
Wick’s theorem for jointly Gaussian random variables.
We now demonstrate that the vector field ®(f) satisfies
Euclidean covariance in the sense of Sec. II and the re-
flection principle.

We consider the Hilbert space // obtained by complet-
ing the pre-Hilbert space /' =S, (R*) =S (R*)x§ (R*)
XS,(]R‘*)XS,(IR") equipped with the scalar product

. - 6uv+ (1/m2)2upu
<F Gy = ;/_ dpfu(p) u(p) pz+mz

where F=1{f,, f1, fo, fot €/’ and G={go, &1, &2 gst
€/’, and the tilde denotes Fourier transform. We let

J(a,A) denote the transformation in
J(a,AVF =AF 40,y JEH

with
}(a,A) =7 (A x - a)),

then we have

(J(a,A)F, Ja,AVF>=<F,7).

Hence J(a,A) is an orthogonal transformation in //.
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Since # is real, and since A is the o-algebra gener-
ated by ¢(#), the Gaussian process over / defined by

d’(F): ¢o(fo) + ¢1(f1) + ¢’2(f2) + d)a(fs)

for Fe#’, and ¢(#)= the fundamental sequence {¢(F,),
O(Fp), =} ELZ(Q B, 1) when 7 is a fundamental
sequence {F,, F,,-" } with F, €/{’, there exists an auto-
morphism T(a A) of the measure algebra of (2,8, 1)
such that

7(a,A)p(F) = ¢(J(a,4)F).

Consequently, we have

T(a,A)(éd)u(}u)) -

3
quiOA-}w¢v(}u,(a,A))
where ]u are the components of 7 and

F i an0)=7 A x - a)).

Hence we have, for fe§ (R*), the relation

uw,{a,

T(a?A)¢u(ﬂ:§)Ale¢v(f(a,A))'

The same relation holds for f€§(R*). Further, Tisa
representation of the full Euclidean group on IR* on
(2,8, 11). Hence we have demonstrated Euclidean
covariance,

To show that &(f) satisfies the reflection principle,
we let

where ;L/ is the completion of the pre-Hilbert space H !
={F ch/’ supp FC(/4, U/, being any arbitrary open set
containing the hyperplane IR}, equipped with the scalar
product {, ). We know that 7L/ﬁ and #, are real Hilbert
spaces., We have

Fock space over Hozf; (Fock space over //;)
Hence, if we let 0,= o-algebra generated by the Gaus-
sian process ¢(#,) over #,, and 0,= g-algebra generated
by the Gaussian process ¢(#,) over #/,, then by Segal
isomorphism we have

LZ(Q’ o, W)= QLZ(Q’ O, U*)
since /, and //, are subspaces of //. Hence we have

L2, 00, 1) =) L3R, 05, u) =1 L*(R, 05, ) = LH(2, 0, 1)
where o, is the c-algebra generated by ¢, (f), u
=0,1,2,3, fe S(R"), supp fc{/,. Hence L¥$2, oo,p.) is
Segal isomorphic to the Fock space over H . Now the
space 7/, consists of certain distributions over §, (IR*)
with support on the hyperplane IR?, They are elements

of / of the form
} = {0’f1® 5,f2® 5,f3® 6}

where fi belongs to a subspace of L%(IR®), with the tilde
denoting Fourier transform.
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If we let 7, be the operator on #, defined by
(7,7),=(=1)%0(F),
with
T ioys Xaays Xz s Xeay) =F (= X0y 5 X1y s Ky s ¥ezy)
for
F ety

then we have

W= 5 0,7,

=§(- 1)’ ((7)),)

=0 (Z 0.3,)
=1(p)p(J)

by Euclidean covariance.
Since T leaves /4, pointwise invariant, we have
HpYp(F)=¢(F) for 7 €H,.

Hence 7(p)=TI(7,) on L*(R,0,, &), where T'(7)) is the
operator on L (Q 0, 4) corresponding to the operator
7; on #/, via Segal isomorphism. Consequently, we have

7( P)u =

for all ue L*(Q, 0,, u). Hence we have proved that &(/)
satisfies the reflection property. We note that this
Euclidean vector field leads to the real Proca Wightman
field via the procedure discussed in Sec, II.

B. A Euclidean tensor field of rank two

Here we construct an Euclidean tensor field of rank
two which leads to the free electromagnetic Wightman
field via the procedure of Sec. II.

To do so, we first construct a pre-Hilbert space 4’
of antisymmetric 4X4 matrices F whose elements F, L8p?
Ky Hy=0,1,2,3, belong to S, (IR*) with scalar product

() ()G, (p)

BqtasVivs

3
2 [apF, .,

Vy,V5p=0

(F,G)=(1/4) !

where F,G c/—/’

u ., and G , are respectively the
Fourier transforms o? F

and G and where

viva?

kuluz,pl,,z(p)= (I/Pz)(Pul ylbu vy +P“2Py26ulyl _Pu pvz Bavy

—p“zp"lé‘*x“z)'
We have
(F,6)= Ullv%z))c!f p Hibe )K“1“z-"1"z(p)c"1"2(p)
v ,VZ)CI

where I={(0,1), (0,2), (0,3), (1,2), (1,3), (2,3)}, and
where the matrix Kuluz'uluz(p), for (i, 4,) and (v,,v,)
€1, is of the following form:
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(vy, 1) = (0,1) 0,2y (0,3) 1,2 (1,3)
Fpﬁp;" b2 b —Dob2  —bobs
Prbz DEHpS Debs  boby 0

W/ bibs  babs P HPS O bobr
—pob2  bob: 0 bP+p.° Dabs
—pobs O bobr  Dabs Pl DS
5 0 —pobs Dob2  =pibs  Dr1b2

We let # denote the completion of #/’, and we define a
Gaussian process d)(ﬁ) over / with mean zero and co-
variance given by

Eo( (G =(F,G)
for 7,G e#, such that ¢(7,) =~ ¢(7) in measure if 7,
—7# in#H. For fe § (R*), we define

b up ()= 0(F)
where 7 is an element of // with
Fapy =0 for (0, 0)# (ky, 1), (A, 2) # (ks 1y),
Ty, =15
I g, = =1

Then ¢, ,, (N, for py, p,=0,1,2,3, fe § (RY), are
jointly Gaussum random variables and further we have
¢u1uz(fa) = ¢,,,,(f) in measure if f, ~fin S (R*). For
fe SR, we define ®,,u,(f) through 11near1ty and we
have the same contmulty property.

We define an operator J(a,A) on / by
Ja,4)F =(AxA) T,
with
Famr®)=FA"x - a)).
Then we have
J(a,4) F,da, AV F)=(F,F).

Consequently, J(a,A) is an orthogonal transformation in
/. Hence there exists a representation 7 of the full
Euclidean group on IR* on (2,4, 1) such that

T(a,A)o( )= oW (a,A) F)

and hence

Ha, A, , (= > AL AL 0 u(Fiaa)

¥ L v14va=0

for f& §,(R*) and hence also for fc $(IR*). Hence we
have shown that ¢, , (), for fe S(R?), are components
of an Euclidean covariant tensor random field &(y) over
S(R?*) of rank two.

We now let {/ be an open set in IR*, and let /" be its
complement, 2/ its boundary. We let

M={7 eH, sapp Fcl'},
N={Fe#, supp 7 < all}.

We let 7 be an element of #/ with supp 7 </ and 7
=0 except for (u,, 4,)=(0,1) and (1,0). Then the
orthogonal projection 7/ of 7 onto /Ml satisfies 7,u,u,

Hikg
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(2,3) (K, My) =

o 1 o0
=Pobs (0,2)
Pobs (0,3)
—pibs (1,2)
DP1Pa 1,3)
b+ ps’ 2,3)

-l

,:0 except for (i, 4,)=1(0,1) and (1,0) and #4,10=

—FM.o1. We let G e with gum:o except for (u,, u,)
=(0,1) and (1,0) and G, €0,((/*°), the space of real in-
finitely differentiable functions of compact support with
support contained in {/’?, the interior of {/’. Then we
have

<g,}/n>:<g,}> )
i. e.
.+.

]
jdx§01( )___al—}/}’} o)
Jngolx) 8 o) }01()

Consequently, we have
fdxg\x)(aoz + 612)(822 + 832)}m ,Ol(x)

= [ dxg(x)(0,2+ 3,2)(3,% + 2,21 F oy (%)
for any g0, (U"°).

Similarly, we let 7/ be an element of // with supp 7’
cl/ and 7/, , =0 except for (u,, i,)=(2,3) and (3,2).
Then the orlthogonal projection }/}1 of 7/ onto /| satisfies
}/é,u u,=0 except for (k,, i) =(2,3) and (3,2), and

: - 22 We let g e with g =0 except for

I 2= b
(pl, Uy)=(2,3) and (3,2) and G}, €0, L/'“ Then we have

(G Fp =(G", 7",

i.e.,
[ xGan BB

:j’ dxg'zs(X) (3 +a -723

Consequently, we have

[ dxg() (@ + 3,23, + 3,907 a(x)
= [ dxg()(3,2+ 8,7)(3,7 + 35°)F 45 (x)

for any g (U/"°).

If we choose F4,=7F,, we have, for any g/ ({/"°),
and consequently for any g /J(//’°), the space of infinite-
ly differentiable functions with compact support with
support contained in {/’°, the equality

[ dxg(x)(2:2+ 3,2)(3,2 + 3,21 o (%)
:fdxg(x)(aoz + 812)(822 + 832)}/;) 123(’6)'

Hence we have

(3,24 3,2)(3,% + 32 ou ()
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= (3% + 3,2)(3,2 + 3.2) /) 25 (x)

as distributions on {/’°. Consequently, we have
o=t K

where A(x) is a distributional solution of
(357 + 2,7)(82 + 339K (x) = 0

in {/’°, and K(x) can be written [one way to see this is to
notice that every distributional solution K®® (x,,,%(s,)
of the Laplace’s equation

(822 + 632)K(23)(x{2) ,x(g)) =0

in {/" is a C” solution of the equation in the same
region® as

L3
K(x) =§k(°”(x(m Xy {2 (%055 %(s))

in some sufficiently small neighbourhood of any point in
(", where k{® (x,,, %) satisties

(322 + 332)k§23’(x«z> ,x(a)) =0

in that neighbourhood. Choosing G,, and G4, =g for some
gD, /), we have

fdxg(x) &Lig"'— F,olx)

=fdxg(x)(a Gl+3%) }'01(x)

and

deg( 8200 7, 6

- axg) B (50 )+ Koo
jdxg(x) '(—g-ﬂj—l}/n 23(%)

:fdxg(x (a +a }'m(x

Hence we have

S dxg(x) I o (x) = [ dxg(x)F 1 (x) =0
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for any g/, ({/’°) and hence any g </ ({/*°). Consequent-
1y, 7,0 has support on 3l/, i.e., Fpeh.

By an extension of this argument, we can show that
the orthogonal projection 7 of any 7 € #/ with supp 7
cl/, ontoM, is in NV, Hence, following Nelson,? we
can show that the Euclidean covarlant tensor random
field ¢ (/) over S(R?) is Markov.

The proof that the field &(f) satisfies the reflection
principle is similar to that of the previous example in
Sec. V. A, noting that the corresponding subspace #/,
here consists of elements of the form

0 0 0 0
0 0 f,00 f,®6
0 —f,®6 0 £,,@56

0 —f13®06 ~f3®0 0

where f;j belongs to a subspace of L%(IR®), with f:j being
the Fourier transform of f;.

Assumptions (i) and (ii) of Sec. I are satisfied in this
case for the same reason as they are satisfied in the
previous example.

ACKNOWLEDGMENTS

The author wishes to thank Professor R.F. Streater,
G. Ekhaguere, S.C. Lim, and B. Skagerstam for fruit-
ful conversations. He also wishes to thank Bedford
College for hospitality and the Science Research Council
for financial support.

*Present address: Institute for Advanced Studies, School of
Theoretical Physics, 10 Burlington Road, Dublin 4,

Ireland.

K. Osterwalder and R. Schrader, Commun. Math, Phys.
31, 83 (1973); “Axioms for Euclidean Green’s Functions II,
Harvard University Preprint (1974),

’E. Nelson, “Probability Theory and Euclidean Field Theory,
in Constructive Quantum Field Theory, edited by G, Velo
and A, Wightman (Springer-Verlag, Berlin, 1973).

ST.H. Yao, Commun. Math. Phys, 41, 267 (1975).

4I,M. Gel’fand and G.E. Shilov, Generalized Functions
(Academic, New York, 1968), Vol. II.

Te Hai Yao 247



Superposition of states and the structure of quantum logics
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A derivation of the classical Hilbert space model of quantum theory is given (including superselection
rules) based (i) on various axioms on the behavior of events and (ii) an explicit formula for the
superposition of two pure states in terms of transition probabilities.

1. INTRODUCTION

The purpose of this paper is to present a derivation of
the classical representation scheme for quantum logics:
a family of pairwise orthogonal Hilbert spaces (one for
each atom in the center of the logic) the rays of which
correspond to the pure states, while the decomposable
self-adjoint operators correspond to the observables.

This derivation is based on a set of several plausible
axioms concerning the behavior of events and states,
and also on the use of an explicit formula for the super-
position of pure states. In this respect we have gone
beyond the ideas studied, e.g., in Refs. 1 and 2, by
providing specific properties of superpositions rather
than a general qualitative definition. In particular it ap-
peared desirable to differentiate between mixtures and
superpositions. The former is a strictly classical con-
cept arrived at by considerations regarding ensembles;
the concept of superposition, however, involves a sense
of interaction between two pure states, apparently due
to the nonzero probability of spontaneous (noncausal)
transition between pure states. We have tried to make
this interaction clear in our formulation.

Section 2 lays the general background on which the
derivation is based. In Secs. 3, 4, and 5 we develop the
first consequences of our hypotheses on the behavior of
superpositions. In Sec. 6 we obtain the structure of the
pure state space and in 7 the structure of the logic it-
self. The last section gives a geometrical criterion for
the validity of our superposition axioms.

2. GENERAL BACKGROUND

The class of logics / we are concened with shall be
assumed to satisfy the properties listed below. We shall
refer to the elements of / as “events.” The undefined
terms shall be, as usual, the relation < which we inter-
pret as implication between two events, and the opera-
tion ’ of orthocomplementation which we interpret as
negation,

Axiom (i): (@) For all A, B, C</ we have: A<A; A
<Band B<A imply A=B; and A< B, B=<C imply A<C.
There exist events 0, I/ such that 0<sA<[for Ac/.

(b) Furthermore, (4’)’ =A, A< B implies B’ < A’ and
AANA’=0, AVA’=], where A\, Vdenote infimum and
supremum relative to the partial order <.

We are not assuming A AB, AVB to exist universal-
ly; we shall be able to establish this later on.

An atom of [ is an event A such that 0< B< 4 implies
B=0or B=A.
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Axiom (ii): (a) If A< B, then A’ A B exists and B
=AV(@A'AB).

(b} Furthermore, if B=A VC with 4,
C atoms, then A’A B is also an atom.

The first part is the classical orthomodularity, while
the second is a weak form of Piron’s covering axiom.?

Notation: In case A< B’ (or equivalently B< A’} we
write AL B and say that A, B are disjoint.

Axiom (iii): If A, A,, - -+ is a (finite or infinite)
sequence of pajrwise disjoint events, then their supre-
mum exists.

Notation: For traditional reasons we shall write this
as 3 A, rather thanV 4, oras 4, + A, +-+++ A in case
of a finite sequence,

A state of [ is a map m: [ —{0,1] such that (a) m(0)
=0, m(D=1, (b) m($A,)=y,m(4,). The interpretation
is, of course, that m(A) is the probability of occurrence
of A, while the “system” is in the state m. We shall
write / for the set of all states.

Axiom (iv): If for each state m for which m(4)=1 we
also have m(B)=1, then A< B.

The physical meaning of this is quite obvious and
gives a precise contant to the otherwise vague word
“implication.”

A state m is a mixture of the states {m_} -, if there
is a positive measure p on X of total mass 1 such that
m(A) = J'me(A)du(x). We shall abbreviate this to m
= fxmxd uix).

A state is pure if it is not a mixture; we shall write
M, for the set of pure states.

Axjiom (v): The pure states generate all states by mix-
tures. Specifically, there exists a measurable space X
such that for every m c//l we have a family {m_} -, With
m, e/}’lx, for all x< X and a positive measure p on X with
pX=1 such that m=[_m, du(x).

There is certainly no need to defend the plausibility
of this hypothesis on physical grounds.

Axiom (vi): If, for some pure state m, all events 4,
(any family) occur with certainty, then the infimum A of
the family {Ai} exists and occurs with certainty in m.

Again, the physical interpretation of this is im-
mediate; indeed one is tempted to assume this for any
state, not just for the pure states. We do not really need
to go that far. One of the consequences of these axioms
shall be the completeness of /.
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We shall now present our first conclusions; any proofs
omitted can be found in Ref. 4.

Proposition 1: For any A+0 in [, there exists a pure
state m with mA=1. Furthermore, the set {mc/M,:m(4)
=1} determines the event A,

Corollary: [ is a complete lattice.

Pyoof: Consider any family {A,} in /. If the only event
< each 4, is the 0, then the infimum of {4,} is 0. So let
0+A <A, for all i; then there exists a pure state m with
mA=1. Hence we also have m(4,)=1 for all { and
Axiom (vi) provides us with the desired infimum.

Notation: For a given m e/l the set {A: m(A)=1} has
an infimum which we shall write as L_; note that we have
m(L,)=1 also.

By our interpretation of < as implication, the event
L, is the ultimate cause of any event that occurs in the
state m. Thus, for any state n, the number n(L,) is the
probability of our system switching “spontaneously”
from the state n to m. We therefore call n(L,) the prob-
ability of tvansition from n to m and write it as (nlm).
The hypothesized absence of causal elements in such
transitions leads us to:

Axiom (vii); For any pure states n, m we have (nlm)
={mln).

Now consider two states n, me/l], with (nlm)=1;
there is then no way of distinguishing them, since our
system is forced to switch back and forth between them.
An alternate argument is that any event that occurs with
certainty in one of them also occurs with certainty in the
other. We shall thus accept:

Axiom (viii): The set of all events occurring with cer-
tainty in some pure state determines this state.

We shall use this in the form: (zlm) =1 implies n=m
(for n,me/M,). Equivalent statements are: L, =L, im-
plies n=m, or {mlm,)=(mim,) for all m €/, implies
m,=my.

Proposition 2: For any pure state m, the event L is
an atom of / ; conversely, for each atom A of / there is

a (unique) pure state m such that A=/ . Furthermore,
any event A is a disjoint union of atoms L, and hence
for any pure state we have m(A)=7 (m! mi>

We shall only establish this last point, namely that if
A= sup{A,.}, A, any family of pairwise disjoint events,
and if m is pure, then m(A)=ym(A4,). Note that for any
finite set 4, , 4, ,...,A; wehave §,m(A,)<1, hence
that 3 m(4,) <1 too Thus all but a countable number of
m(A ) are nonzero; let those A s with nonzero probabil -
ities be denoted by B;, and the rest by C,. Since m(C,’)
=1 for all k£, we have m(me ’)=1, and hence mC =0,
where C=sup C,. Since {B }is countable and suprema
associate, we have A_sup{EB C}; but B, < C,’ for all
k, hence ZB]. L C, and thus

m(A)=m( ZBj) +mC
:Em(Bj)
:Zm(Ai).

Finally a word about the center of / which is the set
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of all A</ such that 4 commutes with all events in / .
Here we say that A, B commute if there exist 4,, B,, C
pairwise disjoint so that A=4,+C, B=B,+C.

Proposition 3: A is the center of / iff for each pure
state m we have m(A)=0 or m(A)=1.

Proof: If A is in the center and » is pure with L_ not
contained in 4, then L_AA=0; since they commute, we
shall also have L_1 A, and thus m(L_)+m(A)<1, and
hence m(A)=0. If L _< A, evidently m(4)=1; since L_ is
is an atom, these are the only possible cases. Converse-
ly, assume m(A)=0 or 1 for every pure state ». Take
any Be/; we want to show that A, B commute, i.e., 4
NAAB) L BAAAB)’. This means BA(AAB) < A’ V(A

B). We shall use Axiom (iv), which is easily seen to
hold even for pure states [with the aid of Axiom (v}].
Thus let m be a pure state with m(BA{AAB)')=1, so
that m(B)=1 and m(AAB)=0; since m(A)=1 or 0, we
see that m(A) must be 0, since otherwise we obtain
from Axiom {iv) that m(AAB}=1. But then m{4d’)=
and hence m{A’ V(AAB))=1 also.

3. SUPERPOSITION OF PURE STATES

A mixture of two states m,n is given by the formula
A~ Mn(A)+ un(A), where A+ p=1 and A, 4> 0. Rewrit-
ing this in the form [a®m(4) + b%n(A))/(a® + b?), where not
both a, b are zero will help to motivate our formula for
superpositions. The idea is to change this a little, by the
the addition of a term representing the coupling of m,n,
in such a way that it shall reduce to a mixture iff this
coupling term vanishes.

We shall assume that two pure states m,»n can be
superposed in any given “proportion” a,b to produce a
state am © bn given by:

A~ [dPm(A)+ 0 (A) + 2ab(m X n)(A))/ (a® + b* + 2ab[m |n])

Here [m!l#] is just (mXxn)(I), and is needed in the de-
nominator to make am @ bn have value 1 at the certain
event. The term (m xn)(A) is (by necessity) a countably
additive functional in A and represents, as mentioned
above, the coupling of the two states #:,n. We shall as-
sume m Xn=nXm, since we should have symmetry for
the whole superposition: am ® bn=>bn® am. We do not,
however, need to assume any explicit form for m Xu;
the axiom to follow provides us with all necessary
structure.

So we have assumed, for m ##n, that all superpositions
am & bn are defined except in case both a,b are zero.
For m =n we should not expect to obtain any new state,
since there is nothing for m to “interact” with; thus we
assume agm ® bm =m for all a,b except in case a+5b=0
(since then the two terms should “cancel out”).

Now consider m #» and the formula for am @ bn; since
the denominator does not vanish for any a,b we must
have |[m|n]! <1, and so its sign is always +. Hence the
numerator is also nonnegative for all ¢,b, and so | (m
Xn)(A)2< (mA)(nA). In case m=n, we obtain at once
(mxm)A)=[mlm] - (mA).

We can now state our basic hypotheses.

Axiom (ix): (a) For any pure states m,n,s there is a
proportionality @, b such that the states am ©bn and s
are orthogonal, i.e., (am®bn){L )=0
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(b) If m{A)=n(A)=1, then (am ®bn)(A)=1 also, for
any a,b.

It is perhaps worth mentioning now that part (a) shall
be used for the analysis of the state space, while part
(b) shall give use the representation for / .

We have at once from this axiom that, given m, n, s,
there exist a,b for which

a*(m|s) + b¥n|s) + 2abm xn)(L,) =0

Thus the discriminant, which is anyway < 0, must
vanish, i.e., [(mXa)L)F={(m!ls)nls).

Now consider the state p=wm @ bn; we have
pL,) = (L+b0%n|m) + 2b(mxn)L,)) (1 + b2+ 2b[m |n]).

Since p is a state, this is maximized at =0, and by
setting its derivative zero, we obtain (mXn){(L,)=min].
Combining this with the previous equation, we get
([m | n])?=(ml ), or [mln]=e(m,n)V(m|ny, where e(m,n)
=+1, In particular {m|m]==+1, but it cannot be -1, be-
cause then the state m @ m is not defined; hence [m|m]
=1.

Going back to (m xn)(L,), we see that it has the form
elm,n, s)V{mls)¥{nls) with e(m,n,s)==+1; our final as-
sumption is that the coupling of m,n in m X# is not too
strong in the sense that e(m,n,s) will be allowed to fac-

tor into e(m, s)e(n,s). Thus we obtain
(mxn)(LJ)=[m]|s]n|s]

A useful corollary of this is that if {s,} is a maximal
orthogonal family of states in/, (i.e., (s;ls;) =0 for i
#j), then

lm|n]=22[m|s,ln]s,].
We shall call this the “Parseval relation.”

Finally note that for p=am ©bn we have

L) = (alm|s]+bln|sD*a®+ b2 + 2ablm |n])*

4. PURITY OF SUPERPOSITIONS

The following regularity property is of fundamental
importance.

Proposition 4: Let p=am @ bn be pure. Then there
exists an 7=+ 1 or ~1 such that for all se///, we have

[p|s]=nlalm|s]+bln|s])a®+ b%+ 2ablm |n]) /2.

Proof: First note that equality of absolute values has
just been shown at the end of Sec. 3. Then observe that
by Parseval’s relation it suffices to obtain an 7 for
which the desired result holds for all s in a maximal
orthogonal set in/,. We thus have for each se/t,, a
number e(s)==+1 such that

[p|s]=e(s)alm|s]+bln|s]) * (@®+ b+ 2ab[m | n])*/2.

Now choose some maximal orthogonal set {31}’161 in
M, and let I ={ile(s,) =1}, I={ile(s;)= - 1}. We take a
g /M, and calculate as follows:
elg)(alm|q]+ bln|q)(a®+ b + 2ab[m | n])* /2
=[plal=20pl|slq|s,]

= (a® + b%+ 2ab[m | n])"l/z{a ;1 [m]s,)la]s;]
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+b_E [n]s;lq]s,]
icl,
~-a Z [mls;][qlsfl

i1
—biz;_ [nlsi][q|8,-]};
since

[mlq]z 12';/1 [m|s,][q|s¢]

:;CI m|si q|si]+E mls q|S]

and similarly for {nlq], we obtain

Z (alm]s;]+bln]s;Dlg|s,]=0 if elg)=

alm|s;]+bln|s,Dlg|s;1=0 if elg)=-

<1,

Using these for g=m, we obtain

if e(m)=1,

a %}_ m|sp)=-b ig_[m|si][n|si]
a ié}h (m|spy=-b iég*[

m|slnls;] if elm)=-1

with analogous conclusions for e(rn)=+1.

Thus, in case e{m)=e(n)=1, the formula for p=am
@ bn gives
?I (p|sy)=1(a*+b>+ 2ab[m|n])™
{—a 2 (msy+b? E (n|s,>}
= icI_
and also

=(a®+ b*+ 2ab[m|n])"
><{a2 2 (m|sy) -0 2 (n!s,)} .
HS iCL
Hence all {p!s,) with < I_ are zero; this means that for
[p]s;]1#0 we have ic I, and 1 can be chosen + 1. The

case e(m)=e(n)= -1 is similar, and we turn to e(m)=1,
e(n)=—1. We obtain as above that

ig_ (p|s;)="(a®+ b+ 2ab[m |n]

and
2 2 -1
= (p|s) (@® + b* + 2ab[m|n])
X{az 25 (mls)—b? 27 (nls,)},
i€1, =i
whence

E (pls ¢>— Z <Pls¢>— @@ + b2 + 2ab[m|n))(@® - b°).

On the other hand,
%+ b2 + 2ab[m | n])t/?

DG

[p|m]=elm)a+blm|n])a

=(a+blm|n]) - (a® + b*+ 2ab[m
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and similarly
[p|n]= - (alm|n]+b)(a®+ b2+ 2ab[m |n])* /2,
which imply
=[p|pl=e(p)a
:e(p)(a —bz)(a + %+ 2ab{m | ]2

[m |p]+ bln|p]a® + %+ 2ab[m | ] /*

But this means
Zplsy= L (pls)|=

and as the sum of these two is also 1 and each is >0,
one must be zero. Thus again all e(s,) for which [pls,]

+0 have the same sign and 7 can be chosen appropriately.

We shall now supply this to the analysis of whether
or not am S bn is pure.

Theorem 1: Let m,n be pure and p=am ©bn. Then p
is a mixture if (mls) (nls)=0 for all se/M,. In such a
case we have in particular (m!n =0, and also that any
superposition of m,» is mixed.

Pyoof: Let us first consider the case where (mln)=0;
we shall reduce the general case to this. Now suppose
p=1[ p.dulx) is a decomposition of p into pure states p,,
and write A= L_+L, (since (m!n)=0 we have L _LL ).
Then mA=nA= 1, hence pA=1 also; but this means that
p,(A)=1 for almost all x, and we shall ignore this ex-
ceptional null set. Choosing a maximal orthogonal set
of atoms L, in A’, we see that {m, n, s,} is a maximal
orthogonal set of pure states, and thus we have

(ol s1=2: Lo, 5,5 |51 oy | mels [m] + (o, | nls | ]
but p (L, )=0 since p,(A)=1 and therefore

[p,]s]1=[p,|m]ls |m]+[p,[nlls]|n],
or p,=flx)m B glx)n, where we set flx)=[p | m], glx)
=[p,In}. Expanding {pl|s) in two ways we obtain that
(@®(m|s) + b%(n|s) + 2ablm|s][n|s]Ha® + )
—f{ﬂx 2m|s) + (g0 En|s)

+2ﬂx g)m|s)n|s]tdulx)

for all se/M,. Replacing s by m and n, we obtain

@/ (@ + )= [ fxlPdulx), b/ )= [ glx)dulx)

and

{ab - ff g du()m|slin|s]=0,

for all se/ll,. Thus, if [m|s][nls]#0 for a single s e/,
we get

(S0P au [ gt dute) = ([ fgle)dux)?,

which implies flx) =kg(x) a.e. for some constant £. But
since p,=flxhm B g(x)n, this means that almost all p,
are identical to km @ #x and hence p is not a mixture!
Hence, in case (ml|n)=0, a superposition will be pure,
unless (m!s)(nls)=0 for all se/l,. Note that, then, any
superposition shall be mixed, by the very formula for
superposition. Now consider (m|n)#0. By Axiom (ii)
(b) there exists a state g with L VL =L, +L , and by
the above argument we have n=[nlm]m &[nlqlg. A
direct calculation gives p=(a+ blm|n])m ® (b[nl ¢])g,
but since (mlgq)=0 and p is assumed mixed, any other
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superposition of m, ¢ is also mixed; in particular » is
mixed—which is absurd. Thus p is pure whenever (m|n)
+0.

5. DECOMPOSITION OF THE PURE STATE SPACE

We shall write m~#n if some, and hence all superposi-
tions of m, n are pure.

Proposition 5: The relation ~ is an equivalence; the
equivalence classes are mutually orthogonal and closed
under superpositions.

Pyoof: The conditions m ~m and m ~»n implies n~m
are trivial; so let m~n, n~q and assume m@gq is a
mixture. As a first step we shall show that for a suitable
choice of a, b we have m ®g={am®n)}&{b(-ne gk
note that by hypothesis m & »n and —n® 4 are pure, and
the right-hand side does make sense. Now for any a, b
we have that

({alm & n) ©b(-n@q)}t|s) = (a®+ b2+ 2ablm G n| - n®q])*
“(a[m @ n|s]+b[-nDg|s])?
By Proposition 4, we have ¢,n(=+1) such that
[men|sl=e@+2(m|n])*?(m|s]+ [n|s]
and
[—n@ql n(2~2[nlgD) (= nln }S]“'[Q}S])
So, if we choose a=¢(2+ 2[m!n])*/?, b=n(2 - 2[nlq¢])*/?
we have at once that
alm@q|s]+b[-nGq|s]l=[m|s]+[q]s]
Also note that
(meg|-n®gl=e@+2[m|n])*([m|-n&ql+[n| ~n®q])
=e(2+2[m|n])"/*n(2 - 2[n|¢])/?
X(=[m|n] +[m|q]-1+[n|q]),
and s0 a® + b% + 2ab[m B¢l — n®¢] becomes 2+ 2[m| q].
Therefore, our choice of a,b will produce

Hatmen)©b(-n@)}|s)
=(2+2[m|qDm|s]+[q]s]

But this means a(m @& n) ©b(-n@ ¢)=m®q. Now since
m @q is not pure, we have by Theorem 1 that [
&nls[~nDgls]=0 for all s, or by Proposition 4 that

~[m|slln|s] = <n|s) +[m|s]llas]+ [n]slg|s]=

for all s. Since m €4 is not pure, we also have the third
term zero; hence [n|s]({mls]+[nls] -[gls])=0. Take

s =g to obtain [nl¢](1 -[nl¢g]}=0, i.e., [nlg]=0 or else
n=g; but n#g because m ©n is pure and m @ ¢ is not.
Hence [n] ¢]=0 and we take s = to find [m!n]+1=0, or
m=n; again this makes m € ¢ =n@ q with the first mixed
and the second pure,

2 for all s.

Thus the pure state space decomposes into equivalence
classes which are mutually orthogonal because of
Theorem 1. Now, if m~n and am @ bz falls in some
other class, we have [am S bnlm]=0, [am S buln]=0,
or a+ b[min]=0 and a[mlxn]+b=0, which makes (m|n)
+1=0 a contradiction,

This decomposition of /, is closely related to the
center of /. Indeed we have:
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Theovem 2: Let X be one of the equivalence classes
in/}, and A4, =sup{L s A}. Then 4, is an atom of the
center C of [, ( is atomic and each of its atoms has the
above form.

Proof: First note that A, is defined since £ is com-
plete. Then observe that m(A4,)=1 or 0 according to m
€ror m¢ A, because mc A implies L < A, while m & 1
implies L, L A, {(by Theorem 1). Thus by Proposition 3
we have A4, e (. To show that 4, is actually an atom of
C, let 0#B<A,, A, #Be(; then there exist L, < B and
L,< A, AB’. Now, since Be( we have, for all se/l,,
that s(B)=1 or 0; thus either s{(L,) or s(L ) is zero,
i.e., (mls)(nls)=0for all sc/,. But this implies that
all superpositions of m, » are mixed, which cannot be,
since m, ne X. This contradiction implies that A, is an
atom of C. Finally, note that the supremum of all the
A, is the unity I of L, since the union of all A is just /Hp.
Since C is a Boolean o-algebra, it must be atomic; and
since there is no room for other atoms, they all have
the above form.

6. CONSTRUCTION OF THE COMPONENT SPACES

Consider again one of the classes constructed in Sec.
5, say A, and recall that it consists of pure states; it is
closed under superpositions and is maximal as such.
We shall associate to this A a Hilbert space # con-
structed as follows.

The set #/ shall consist of all pairs (@, m) with ac R
and m < A, considered distinct, except for the pairs
(0,m) which are all identified to each other; we shall
write 6 for this particular element of /#/, and abbreviate
(a,m) to a*m. The elements of // shall be called vectors
and written as ¢,¥,w, **°

For y=a-m and ¢ =R we define ci to be (ac) *m; for
v=a°m, $=>bn we define y + ¢ to be the vector c-p,
where p=am@®bn and ¢ =n(a®+ b*+ 2ab[m | n]))*/? (n=2x1
is the sign obtained from Proposition 4, i.e., such that
for all s /¥, we have

(p|s]=nla®+ b7+ 2ablm |n])"/2 (alm [s]+ bIn|s]).

There is still left a case to consider: m=nand a+b5=0
do not produce a superposition; but ¢ =0 in this case and
we set ¥+ ¢ =0, Finally we define (! ¢) to be the
number ab[m!n)].

Theovem 3: The set // is a Hilbert space under the
operations defined above.

Proof: The argument is long but straightforward.
First we consider addition. It is easy to see that ¢+ 0=
=y Since 6= (0,x), we have (writting $+ 6=c - p) that
[pls]=nla/1al)[m!s] (with y=a-m) so that {pis)={mls)
and hence p=m; on the other hand, we get na/lal =1
and since ¢ =7nlal we end up with c=a, i.e., ¢+ 0=9.
By our definition we also see that for y=«a°m and ¢
= {~-a)*m we obtain § + ¢ = 8. The commutative law is
trivial, so we now consider the associative: (¥ + ¢) + w
=9+ (¢ +w), where p=a°m, ¢=Db°n, and w=c*q; wWe
may assume a, b, ¢#0, as in this case our first re-
mark renders the desired result trivial. Now

v+ ¢ =n(a® + b2+ 2ablm| n)) e (am S bn),

where 7 is chosen to make
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lam @ bn|s]=nla®+ b2 + 2ablm | n])/2(alm|s]+ bln|s])

valid for all s e/l,—provided y+ ¢+ 6. But y+ =6 im-
plies m =n and a= - b, and we shall verify associativity
first for this case. We have to calculate ¢ + w; if this is
also 8, we have at once ) =w and it holds. So let ¢ + w
# 6. Since ¢ =(~a)°m, we have

¢+ w=ela®+c? - 2ac[m|q])"/? (- a)m ®cq),
where ¢ is such that
el@®+c? = 2ac[m gD (- a)ym @cq|s]= ~alm|s]+ clq|s]

for all s. We must show w=9p+ (¢ + w), 50 we calculate
this sum; it has the form 4 -p, where

d=05(a’+ (a®+ c? - 2ac[m | q]) + 2ae(a® + ¢* - 2ac[m | g /*
X[(-=a)m @ q|m/?

and

dlp|s]=alm[s]+ela®+ c® = 2aclm|g)*/?[(~ A)m @ cq|s].

Using the above to calculate [(- a)m @ cqlm], we find
that d=351c¢l and hence [pls]=(5¢c/1cl)g!s]; so we get
again p=gq, ¢/lc! =0 and finally d=c, i.e., w=d°p.
Now for the general case where p+ ¢+ 0+ ¢+ w, we
have the previous formula for ¢+ ¢ and also

&+ w=e(b*+ %+ 2bc[n|g)' 2 (bn® cq),
with
(bn@cq|s]=e®®+ c?+ 2bc[n| gD /2 - (bln|s]+ clg|s].

Again letting d - p equal ¢ + (¢ + w), we have
d=6(a®+ b2 + ¢ + 2bcn|q] + 2ae

X (b2 + ¢ + 2bc[n| gD 2 m | bn® cg))*/?

and
d[p‘s]-——d(a[m[s]+e(b2+c2+Zbc[niq])”z[bn@cqis]).
Again, as before, we obtain
d=06(a®+ b+ %+ 2bc[n|q] + 2abln|m]+ 2aclg|m])*/?
and
[p|s]= (1/d)alm|s]+bln|s]+clq|s]).

This shows that (p|s)=[pls} is symmetric in ¢, ¢,
w, hence so is p; therefore, d is symmetric and finally
5. But this means ¢+ (¢ + w) is symmetric in ¢, ¢, w,
which does it.

We shall now verify that c(y + ¢)=cy +c¢ and omit
the remaining properties of scalar muitiplication; they
follow analogous patterns. Using the previous notation,
we have

ch+cp=(ac) m+(bc)- n
=6(a?c? + b%c? + 2abc®[m | n)1/ 2+ ((ac)m & (be)n)
=6|c|(a®+ b*+ 2ablm | n])/*(am © bn),
where we have § chosen so that
((ac)m @ (bcIn|s]
=6(|c|(a®+ b + 2ablm |n])* 2y *aclm |s]1+beln|s).

But since (ac)m @ (bc)n=am @ bn, we obtain 6¢/lcl =mn,
so that finally
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cp+cop=cnla®+ b2+ 2ablm |n]) 2 am @ bn) = c (Y + ).
For the inner product we see that
@+ ¢ | w) =n(a®+ b2+ 2ab[m | n))*/ *clam ® bn|q]
=clalm|q]+bln|g])=aclm|q] +bcln|q]
=@|w)+ (¢ |w),

and similarly for the remaining properties. Also (! )
=d*, so iyl =0 implies y=16.

Finally we verify that // is complete. It suffices (see,
e.g., Ref. 5) to show that any maximal orthonormal set
{,} is a basis. Now ¢, =a, °m,, and since 11y, =1 (i.e.,
la;l =1), we can assume g, =1 without loss. Also, it
suffices to expand a vector ¢ of the form 1. First
note that {2} is a maximal orthogonal set of pure states
in the given class X; next, that {nlm,) =0 for all { implies
{nl m) =0 also, because if this is not the case we have
n~m by Theorem 1. Hence n< A and thus {m,} is not
maximal orthogonal. Thus, if we augment {m{} to a set
{m,,n,}, maximal orthogonal in/)?p, we have (mln,)=0
for all j. Therefore, ¥ {mlm; =1. Now we can calculate

9= 20 @[odul* =1 - fb G |my)

for any finite subset in {m,}, and since this last term
can be made as small as we like, we have v=3, @)y,

7. THE REPRESENTATION THEOREM

Let A be the set of all classes of //l, obtained in Sec.
5, and for each A< A let /4, be the Hilbert space con-
structed in Sec. 6. By Theorem 2 we have also asso-
ciated with 2, an atom C, in the center of our logic.
Now, given Ac /[ we construct the family {4,},c4, where
A,=A NC,, and note that A=73, A, (since C, are in the
center); conversely, any family {Al} with A, < C, pro-
duces by summation an element of /. Since the C, are
the atoms of the center, we obtain at once that / is the
orthogonal sum of the logics /,={AcL: A<C,}. We
shall therefore restrict attention to [, for some fixed A,
and note that 1 is precisely the set of pure states of /.
From now on we shall write / and // instead of /, and

#.

Consider any Ae/ and write #, for {a°mm(4)=1};
by our fundamental hypothesis on superpositions [ Axiom
(xi) (b)] we see that H, is a linear manifold in /.

Pyoposition 6: For any Ac/, H, is the orthocomple-
ment of H, in #.

Proof: Let y= H, and ¢ H,, with y=a°-m, ¢=0b-n;
then m(A)=1, hence m(A’)=0 while L _<A’, i.e., m(L))
=0or {mlm=0. Thus (y! $)=0 and H,, < (H,)".
fix ¢  (H,)*; for any y< H, we have (min)=0, or n(L,)
=0, hence n(A4)=0 (since A is the disjoint union of
atoms L, ). Thus n{4’}=1 and ¢ c H,, or Hp = (H, ).

In particular H, = (H,,)* and is therefore closed. We
shall write P, for the orthogonal projection on // with
range H,. Note that for 1 =1, i.e., y=(x1)-m we
have 1| P, yli®=m(A), because if {s,} is a maximal orthog-
onal set of states with s,{(4)=1, we have m(4)=3{(mls)
=3 [ml s;F; so writing $;=1+s;, we obtain on the one
hand {y,} in H,, and on the other the relation 3(!3,)?
=P gn°. Since (y!y,)=+[mls,;] we are done.
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Theovem 4: The map A — P, is an isomorphism of the
logic / onto the lattice of all projections in /.

Proof: First we verify that A< B iff P, < P;. The first
holds iff m(A)=1 imples m(B)=1 for all pure states,
i.e., iff the range of P, is contained in the range of Pj.
In particular, the map A = P, is one to one.

We have already seen that P,, =/ - P,. Next we show
that if A=F A,, then P, =% P, (in the weak topology of
#): For any pcH, 1gn =1{i.€., y=(£1)-m] we have

1Py 812 = m(A)=2im(A) =2 1IP, yIP
=23(P, | 0) = (Z P, Jo]9)= (2 Py W%,

We shall use this to show that the map A~ P, is onto.
Consider any subspace K of #// and a basis {§,} in K; we
can assume P, =1-m,;, Write P, for the projection on the
space spanned by ,, so that the projection on K is y P,.
But the space spanned by i, is H, , where 4, :L”‘i;
hence the projection on K is simpiy P, withA=34,.

8. AGEOMETRICAL CONDITION

We shall now translate the hypotheses in Sec. 3 con-
cerning superpositions of pure states into properties of
the functional { | ) on the state space.

To avoid mentioning events, we introduce the following
terminology: Two families {s,}, {¢;} of orthogonal states
are “equivalent” if for each m we have ¥ (mls,)
=3;(m|¢). This means that 7L, =3 L, , but knowledge
of { | ) is suffcient to determine equivalence.

Theovem 4: Suppose that to each pair m, »n of pure
states there corresponds a number [m|#x] in such a way
that:

(1) [m|n]=[n|m], Im|{nF=m|n), n|ml=1;

(ii) for any pair of equivalent families {s}, {;;} we
have 3, [m!s,Jn s,]=3; [m][nlt,] (for all m,n).

Then the map m xn: A3, [mls,][n!s,] [where {s;} is a
maximal orthogonal set of states with s,(A4)=1] is single
valued and countably additive on /. Finally, unless m
=n and ¢+ b=0, the map

am @ bn=(a®+ b* + 2ab[m |n])" (a®m + b*n + 2ab(m X n))
is a state of / for which all hypotheses in Sec. 3 hold.

Proof: Hypothesis (ii) is designed to guarantee the
single valued of m xn. However, let us first verify that
the series actually converge: We have

(2 |[m]sdn]s,]] < ( 2i[m| s, PU 2[n|s,]P)

by Schwartz; hence we obtain the bound (3 {m!s,))
$nlsp)=m(Am(A). Thus, we also have | (m xn)(4)l®
< m(Am(4). To verify countable additivity of m X, let
A:E{Aj:jeJ} and choose {sjk}kei( maximal orthogonal
with s;,(A4,)=1; then {s,,:k eKj,jejJ} is maximal or
orthogonal in 4, and

CIDICVEPMCIEN LM

i

=2 L

T €T €k, [ | spulln ‘ Sj]

by absolute convergence. But the inner sum is just (m
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xn)(4;). Choosing a maximal orthogonal set in M, con-
taining m, we see that (m x»n)(D)=[m|m]xnl m]+0
=[m!|n], and so the value of am @ bn at I is 1. Since |(m
xn)A)Z <m(A)n(4), the numerator is >0, and since
[[mln]!l <1, the denominator is also, and am @ bn final-
ly becomes a state.

Given any s, we have by our definition (mXn) (L,)
=[m!s][nls], and this gives Axiom (ix)(a) at once. To
verify the second part, first note that “Parseval” holds:
For any maximal orthogonal set {s,} of states, we have

[m |n]= mxn) D) =22[m|s,]n|s,].

Next, observe that m(A)=1 implies (ml£) =0 for any
t for which L, L A; thus, choosing {si} maximal orthogonal
in A [i.e., s,(4)=1] and {¢;} maximal orthogonal in A’
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[t;,(A’)=1] we argue as follows. Given m(A)=1, n(4)=1,
we have [ml#,]=[nlt,]=0; hence

(m|nl=2[m|s,)n|s,]= (mxn)(A),
which implies
(am @ bn)(A) = (a® + b* + 2ab[m | n])™*
X (a®*m(A) + b?n(A) + 2ab(m xn)(A)) = 1.
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Renormalization group for a system of continuous spins on
a lattice*

K. Subbarao’

Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14850
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The renormalization group for a field theory on a lattice, or equivalently, in the language of statistical
mechanics, a system of continuous spins on a lattice, described by Wilson, is considered in detail. The
conditions under which a class of transformations are renormalization group transformations are studied.

I. INTRODUCTION

The modern formulation of the renormalization
group! by Wilson offers promise of enabling one to com-
pute, perhaps using numerical approximations, the
short distance behavior of a field theory. Various field
theories in 4 - ¢ dimensions? have been solved in an
expansion in ¢; scalar field theory in three dimensions
has been solved in a qualitative way.® On the other hand,
lattice problems like the Ising model have been attacked
numerically by renormalization group methods*=5; the
approximation involved is a restriction to a small num-
ber of lattice sites. A lattice formulation of field theory
therefore deserves study. Such a formulation has been
provided by Wilson.” After a brief discussion in Sec. II
of renormalization group transformations in continuous
space-time, the lattice formulation of Wilson is ex-
plained in Sec. III for a boson system, and whether or
not a class of transformations is allowed is discussed
in detail.

The action principle for a field theory with Euclidean
metric can be expressed in terms of a path integral
formulated on a lattice.® In the language of statistical

mechanics, we will be dealing with a system of con-
tinuous “spins” on a lattice. The “spin” variable which
varies from -« to +« is just the field variable at a
lattice site. The Hamiltonian appearing in the exponent
of the Boltzmann factor is, in field theoretic language,
the action (integral of the Lagrangian). We will use the
terms spin and hamiltonian. (Our remarks here are
oversimplified. For a further discussion of the-connec-
tion between field theory and statistical mechanics, see
Wilson and Kogut, Ref. 1, Chap. X.)

II. RENORMALIZATION GROUP IN THE CONTINUUM

For orientation purposes, consider a renormalization
transformation in continuous space.® It takes a
Hamiltonian H(Sq), a function of the spin-variable S, in
momentum space, to a Hamiltonian A’ (S’ ); the trans-
formation integrates out the degrees of freedom cor-
responding to high momenta (say, momenta > exp(~ ¢)
where ¢ is a continuous variable) while preserving the
low momentum behavior. A detailed discussion is
found in Ref. 9. An explicit example is given by!®

2

e 5 )= [ enp (5 | 2P0 25,0l PO S =S o0l MY . ot
a 1-exp[-2a(g?,1)]

where | | is functional integration, ¢’ =ge?, and a(g?,?)
= p(¢®,t) +dt/2. Roughly speaking, $’_, behaves like

S, exp[—ﬁ(qft)];‘ thus, we would like exp[- 8(¢?, #)] to be
small for ¢ > exp(~#), and of the order of unity for g4

< exp(—1#). A particular choice is!

B(g?, 8) = g*(exp(2t) - 1) - pt 2.2)
Here p is a constant which is constrained as noted
below. (The pt term is essential to impose a suitable
normalization condition on & ,.) In Eq. (2.1) only a
linear combination of S’ and S appears. For this reason
we will call (2.1) a linear renormalization transforma-
tion. !2 This linearity leads to a linear relation between
the initial and transformed correlation functions. A
critical system has infinite correlation length and the
correlation function for small momenta falls off like a
power!® say ¢-**". Imposing this condition on the correla-
tion function before and after the transformation gives?
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b

r
_d~2+7

5 (2.3)

Equation (2.1) can be written in configuration space as

exp[H'(S")] = seXp{—%fx F(x = p)[s" (%) = (s (x))]
x[s*(y") = (s (y) ]} - exp[H(S)], (2.4)
where
¥ =xexp(-1), v’ =yexp(=1),
s(x) :(Zw)'df S, exp(-igx),
(s(x)y = [ W,(x = 2)s(2), (2.5)
f W,(x) exp(igx) = exp[ - B(g?, 1], (2.6)
F(x) = fq expligx)/{1 - exp[~2a(g?, 1)}. 2.7
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(s(x)y is a weighted average of s around x with weight
function W,. One can choose this weight function to be
constant in a cube of side (et — 1) and zero outside. This
gives (2‘ 8)

epr—Bﬁ=eXpQﬁ)iﬂSin(qu;—]))//(qde;—l)>'

Equations analogous to (2.3) and (2. 8) will appear in the
lattice formulation.

I1l. RENORMALIZATION GROUP ON A LATTICE

Renormalization group transformations on a lattice
formulated by Wilson” will now be explained. Consider
a lattice in a d-dimensional space with unit spacing.

The lattice provides an ultraviolet cutoff: the momentum
components lie in the interval (- 7,7). Let S, be the

spin variable at the lattice site n, —0 <S, <. Let Hy(S)
be the hamiltonian of the system. A renormalization
transformation will now be defined. * Divide the lattice
into cells, each cell being a hypercube with side two
units (Fig. 1); the nth cell has 2? sites, labeled 2n +m
where each component of m has the value 0 or 1.
Associate a spin S, with the nth cell. Let H,(S’) be the
hamiltonian for the new lattice. The transformation
taking H,(S) to H,(S’) is a renormalization
transformation,

exp[H,(S")]= [ I;IdSi T,(S’,S) exp[H,(S)]. (3.1)

The transforiuation will be required to have the property
that the correlation length of the new system (in units of
the new lattice spacing) is half that of the old system (in
units of old lattice spacing). If the initial system is
critical, i.e., if it corresponds to infinite correlation
length, then the new system also has infinite correla-
tion length. In this case, by a repeated application of
transformation (3.1) one can expect to reach a fixed
point of the transformation. Linearized perturbations
around this fixed point then give critical exponents or
anomalous dimensions in the usual way.!

A simple choice of T,(5,S) is'®
1

7,(57,8) =exp[— 3 2 (S}, = 20 by, Sapen)’],
n 0

m=i

(3.2)

where a, and the b, , are parameters.

If H, is the hamiltonian obtained from H, by applying
transformation (3. 1) k times, then one can write, for
1<ks=l,

exp[H,($)]= [ 1‘11 dsS; T(S",S) exp[H,_,(S)]. (3.3)
Choice (3.2) makes T, a simple function, i.e.,

T,(8,8)=exp[-3 "2 a, (S, - :ZEIJ b ymSLem) 15 (3.4)
where

L =2% (3.5)

Let us look at Eq. (3.3) with I=%. Each cell is a cube
of side L and the L? sites of the nth cell are labeled by
Ln+ m where each component of m runs from Oto L ~1.
One can show that
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@=a(1 -B)/(1 - B,

where

1
B=2 5} ..

m=0
One can solve for b,,m similarly; for brevity the result
will be given later only for two special cases of in-
terest. Is transformation (3.1) with (3.2) an acceptable
renormalization transformation for all the values of the
parameters? To find out, consider the relation between
the correlation functions corresponding to H, and H,,

(3.7)

L-1
T,)= 2 b,,.b (3.8)

1
m k,mzro(Ln +my —my) + p b 6

my 4 mp=0 k

It might seem that for large », one can replace Ln+ m,
—m, by Ln to conclude that T',(n) = B*T(Ln); since T,(Lxn)
behaves like | Ln]~*-*" T () also seems to have the
same »n dependence thus preserving long distance prop-
erties. This argument is incorrect. The large » limit in
the left hand side of (3. 8) corresponds to long wavelength
limit. However, waves of wavelengths which are sub-
multiples of L on the old lattice look like waves of
infinite wavelength on the new lattice. Such wavelengths
are present on the right side of Eq. (3.8) and cor-
respond to the various values of m, and m,. In other
words, the long wavelength behavior of I', depends not
only on the long wavelength behavior of T', but also on a
sequence of smaller wavelengths; however, if the de-
pendence on these shorter wavelengths is weak enough,
the long wavelength behavior of I', will be the same as
that of T',.

To see this clearly, let us go to momentum space
where we introduce the Fourier transform S, of S,

S,=21S, explign). (3.9)
Equation (3. 3) now becomes
1 1
T(S,S) = exp{ -3 G a [S;
q
/2
q+2nl
- 1=-I§2»1Uk( L ) S("*z"”/l‘:]
Xlg—=~q] , (8.10)
where —
U(p)=2sD, , explipm). (3.11)

m
Comparing (3.10) with (2.1) we see that U, plays a
role analogous to that of exp(~ ) (¢ plays the role of ¢}.
Roughly speaking, from (3.10) it follows that §/ behaves
like 3, U,((g + 271)/L)S, .2,y ;1.5 thus §7, depends not only
onS . buton S, - We would like the transforma-
tion to preserve the small momentum properties; this
means that §’  should depend primarily on S,/L, and
the weight factors associated with §,,,,,,,, for [ #0
should be small compared to the weight factor for [=0.
In order to make this quantitative, look at Eq. (3.8) in
momentum space {momentum components, whether they
refer to the old or the new lattice, vary from -7 to n),

~ e nd + 1
Fk(q):Z"'kZl/|Uk(q+L2nl) 2r0<‘1 z"l)+;lz~. (3.12)

L k
If the small ¢ behavior of T', is the same as that of T,
then one can look at the limit 2 — « to reach a fixed
point, and obtain information about 'y by studying only
the fixed point and its neighborhood. If one starts from a
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FIG. 1. Part of an infinite two-dimensional square lattice
divided into 2 X2 blocks.

critical hamiltonian, T (¢) behaves like 1/¢*™" for
small ¢ where 7 is a critical exponent. Knowing this,
and for any specific choice of b, , in Eq. (3.2), com-
puting U,(p), one can take the limit of £« in Eq.
(3.12) and check if T,(g) also behaves like 1/4%".

We will now consider two specific cases, one of which
is a good transformation, the other being unacceptable.
Case 1: b, , = b, independent of m. All site spins are
given equal weight [see Eq. (3.2)]. One can show that

bym= 01, (3.13)
aZ=ai(1 - 293)/[1 - (2¢b3)4], (3.14)
0,(p) =1} 11 explip,(L - 1)/2]%(1’1;%2)). (3.15)

A graph of sin(p,L/2)/sin(p,;/2) for 0< p, <7 is sketched
in Fig. 2 for L =8. Crudely speaking, transformation
(3.10) thins the degrees of freedom!® in the following
way: The degrees of freedom® in the interval (7/L, 37/
L) are folded over the interval (-a/L,n/L) by the I=1
term; similarly for other intervals. Since U, is large
in the interval (- n/L,7/L) compared to its value in any
other interval, one can expect this folding over not to
foul up the small g behavior. Thus this transformation
acting on a critical Hamiltonian should lead to a sensi-
ble fixed point. In the limit 2= ~, Eq. (3.12) gives

= 1 . .q 1 1
™ ()= (1 =sin24L) o1
@ <,- g 5% 2> ? i (g, + 27 (g+2al)*"

122
e (3.16)

ay
It is also necessary to choose!?+®

bf — 2-(,1*2-7,)

(3.17)

For small ¢, the [ =0 term in (3.16) dominates, ensur-
ing that the small g behavior of T*(g) is 1/4™.

Case 2: b, , =b, for one of the 2 site spins, 0 for the
rest. This gives b, , = b} for one of the 2** site spins,
0 for the rest.

= a1 - b3)/(1 = b7, (3.18)

Also | U,(p)! =bf and is independent of p. Hence the
folding over of the degrees of freedom should foul up

the small momentum behavior leading, if at all, to an
uninteresting fixed point. Taking the limit of Eq. (3.12)
as k=, and replacing T,((g+ 27n)/L) by [L/(g+ 2a1)]*",
we get
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2kl 1 + 1
Tyg)~@iz¥enr L Tgveml™ &

1==2 +1

(3.19)

The series diverges as k — « for all cases of interest
if d=> 2. Another way to see this trouble is to look at Eq.
(3. 8) which for this case is
1
T (n)=b3*T(Ln)+ = 0, .
a; "

(3.20)

Since T'(Lx) behaves like | Ln | -#*23-" for large n, one has
to choose b%=2%"2"", For all cases of interest in d>2,
b, is greater than unity. Equation (3.20) for =0 reads

T (0)=per (0)+ =L 1 (3.21)
k 1ve b:i-1 a

This diverges as & — =,

There are, of course, any number of intermediate
situations between Cases 1 and 2. In Case 1, all of the
2¢ gpins of a block were given equal weight; in Case 2,
only one of the 2¢ spins was given nonzero weight, For
intermediate situations, the above discussion is readily
applicable with the obvious modifications. As one de-
creases the number of spins which are given nonzero
weight from 2¢, it takes an increasing number of itera-
tions to get rid of the effect of the overlapping of the
high momentum degrees of freedom on the low momen -

tum behavior, resulting in a slower convergence to a fixed

point. Eventually a stage will be reached when the over-
lapping fouls up the low momentum behavior leading, if
at all, to an unphysical fixed point.

It is also clear from the above discussion that if one
eliminates the overlapping completely, i.e., if one
chooses the function U, such that it vanishes outside the
interval (-n/L,n/L), the convergence to the fixed point
is expected to be faster. In this case the block spins
will be linear combinations of spins extending beyond
the block.

Niemeijer and van Leeuwen* have done very success-
ful finite lattice calculations for the two-dimensional
Ising model using a nonlinear renormalization transfor -
mation. The transformation used in this paper is a
linear renormalization transformation. A nonlinear
analog of Eq. (3.2) is

2mm

T,(S",S)=exp{- 32 a,(s", -b23 S

FIG. 2. A graph of the function sin(p,L/2)/sin(p;/2) for
L=8,
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Szn*mlszn’mzszmma)z}' (3 22)

If c=0, then b is constrained to be equal to 2-(*2-n/2
(Eq. (3.17); one might guess that if ¢ is not zero, then
b (as well as ¢) is unconstrained (just as it presumably
happens in the Ising case) at least over some region.
(For a discussion of this see Bell and Wilson, Ref. 12).
For this reason the above transformation may indeed be
very desirable, but it is too complicated for the sort of
analysis done for linear transformations in this paper.
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For an arbitrary Bravais 7 lattice in an m-dimensional Euclidean space amd for 0 < a< «, we present an
extension of the Chaba and Pathria method of evaluating the lattice sums X’,7=2% exp(— a7?) from integral

k values to all positive k values. We use the extension to study the asymptotic properties of these sums as
the parameter a approaches zero. The leading term is given by #™/2 [[(k}(m/2—k)a™*~*]~" for

0<2k< m, by ™ *T(k)~! In(1/a) for 2k = m, and by 3',7~%* for 2k> m. Thus 2k = m gives a transition

point from structure independence to structure dependence.

1. INTRODUCTION

Let {7} be a unit Bravais lattice in an m-dimensional
Euclidean space with a unit reciprocal lattice {y}, let
0<a<w, let 0<Z, and then consider the class of lattice
sums defined by

J.(a, b, m) =23} 7% exp(~ at?). (1.1)
Chaba and Pathria (CP)! have recently supplied a pro-
cedure for evaluating these sums for the subclass where
k is a positive integer. They give detailed expressions
for the special case where the 7 lattice is m-dimension-
al simple-cubic, for which the two lattices are identi-
cal and some expressions are specialized, but they also
give a sufficient outline that permits one to extend any
of their equations for the general T-lattice. In addition,
CP discuss earlier related work of Glasser®~* and
Zucker®® and point out many areas of applications.
These areas include Bose—Einstein condensation in fi-
nite systems, 7'® the stability of an array of quantized
vortices in Type II superconductors and in rotating
superfluid helium, ® and certain Madelung sums. *°

We have been studying the larger class of sums for
which % is any positive number, and we have determined
the asymptotic properties of them as the parameter a
approaches zero. Using Ewald’s theta function method
(TFM), 11! we derive expressions for J,{a, k, m) valid
for all 0<g <=~ and all 0<% and cast these in a form
similar to those of CP but void of CP’s integration con-
stants. Then we use these to determine the asymptotic
properties. For three reasons we think these results
may be of interest: (1) In the areas of application of
CP sums with integral » values mentioned above’™!?
there may be interest in modifying the theoretical mo-
dels such that nonintegral # values enter; (2) The CP
sums may be used to study or evaluate other sums that
are expressible in terms of integrals containing the CP
sums as a portion of the integrand. (3) The generalized
CP sums provide another example of a class of sums
whose asymptotic properties are independent of the lat-
tice structure over a certain domain of some parameter
and dependent on the lattice structure over the rest of
the domain except for the “boundary” point where the
properties are somewhat special. This special point
acts somewhat like a “transition temperature. !5
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As a approaches zero, the leading term for J,(a, k, m)
is simply given by setting a=0 in Eq. (1.1) provided
2k >m, which clearly depends on the structure of the
7 lattice. For 0<2k <wm, the leading term diverges in-
versely as a power of ¢ in a manner that is independent
of the type of lattice; for 22 =wm, the leading term di-
verges logarithmically as In(1/4), again in a manner in-
dependent of the structure of the lattice.

2. DERIVATION OF THE EXTENDED FORMULA

The TFM suggests writing J,{a, %, %) in one of the
various forms,

(&), (a, b, m) =257 [ *y** exp[~(a+y)7]dy
=21 fa“(x - a)* exp(= x7%) dx

= [“(x- @t T exp(~ x1%) dx, @2.1)

where interchanging the order of summation and inte-
gration may be justified by applying the Weierstrass
M-test for uniform convergence. The TFM would also
lead to a consideration of the quantity

I‘(k)H,(a, k, m) Eﬂ,m/Z(_ l)k-lak-mlz
X Ty [ (= P AR oy ity /a) dx

=.n.m/2(lk-m/22;f01(t_ 1)k-1t-m/2

X exp(— 122/ at) dt. (2.2

The second expression in Eq. (2.2) may be rewritten as

a® fol(t_ 1)‘*-1(n/at)'"/2[2, exp(= 7%/ at) - l]dt
= fol[ak(t =125 exp(— at7?) — (t = 1)* Y (x/at)™ 2] dt

=kl (= 1)+ fO“ (x = @)*[2.)! exp(- x72)
~ [+ [ exp(- xB®)d™B]dx, (2.9)

where use has been made of the Poisson summation

formula (PSF).'® We extend CP’s results by combining
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the above relations so as to yield for 0 <k,

2. T2 exp(- at?) + H,(a, k, m)

=[kT ()] (- 1" + P (a, k, m) + Ala, by m),  (2.4)
where
T(R)A(a, b, m) = [ (x = af*4(n/x)"/2 d, (2.5)
L(R)Py(a, b, m) = [ (x = af4{ L] exp(- x7?)
- [+ [ exp(—x8?) a™8]dx
+224 f1 “(x = @)t exp(—x7%) dx
+ [ = (n/0) 2 ax, (2.6)
and where
©, k<m/2,
b={1, k=m/2 2.7
0, Ek>m/2.
For the special case k=1, Eq. (2.4) reduces to
21 T2 exp(= at?) + 12" 2 7 3" (m/2 = 1, 7Y%/ a)
=a+P.(a,1,m) + [ (/0" 2 ax, (2.8)

where
P(a,1,m)= fol[Ef' exp(-x72) = [+ -+ [ exp(-x?) d"8]dx

+ 5 T exp(= 19 + [ /)™ 2 dx

is independent of a and reduces to CP’s constant C,,
when the 7 lattice is simple-cubic.

(2.9

3. ASYMPTOTIC PROPERTIES

Suppose that 0 <a< 7 and that 0 <2k <m. Then Eq.
(2. 4) yields
J.(a, k, m)
~Ala, kym) =a™ 27 (R)? [P arm/2 gy
7P (k)(m/2 - k)a™ 2+, 0< 2k <m,
:{nm/ 21 (k)*1n(1/a), 2k =m.

Thus for 0< 2k < m, the asymptotic behavior of
J,(a, k, m) is, to first order, independent of the struc-
ture of the 7 lattice.

(3.1)

Next suppose that 0 <a <7 and that m <2k, Then
clearly we have

J.(a, b, m) =25 T2, (3.2)

which is structure dependent. 15
Clearly, one might have guessed the results of Eq.
(3.1) from examining CP’s results for integral 2 values,
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but it is useful to know for certain the dependence on %
(especially for small %) as well as the dependence on a.

4. THECASEa = n

If a=7 we have

Jo(m, ky m) =T (k) 722, j;”(x ~ 1 exp(- mx7m¥ dx, (4.1)
Hr(ﬂ’ k, m) = (‘ ]»)k-ll-‘(k)-l"ﬁ}z Z,.;
X [ =(x = 1)1xm /2% exp(— 1xv7) dx., 4.2)

Thus J,(7, 2, m) and H,(m, k, m) may be comparable in
magnitude, especially if 2k =m — 2, There are both dif-
ficulties and useful features associated with this fact.

A difficulty arises if one wishes to use Eq. (2.4), or
CP’s method (for integral k-values), to evaluate
J.(a, &, m) for a=7, because one may have to sum over
many terms in evaluating H,(a, k, m). However, in this
domain of a-values direct use of the defining expression
of Eq. (1.1) is feasible provided the dimension of the
lattice is not too large.

Even when interest is centered on evaluating J.(a, k, m)
for a<< 7 useful relations may be found by considering
a=m, as CP have illustrated with their Eqs. (9) and (10).
With increasing degrees of specialization, consider Egs.
(4.1), (4.2), and (2.4) with a=7 and first with 2k
=m -2, second with additionally #=1, and third with
the 7 lattice simple-cubic. The third stage reproduces
CP’s Egs. (9) and (10), the second stage extends CP’s
Eq. (9) to general Bravais 7 lattices, and the first stage
obviously leads to simplifications, but we have not shown
their usefulness within the general framework of the
CP method.
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The Dirac equation for motion in a central potential is generalized to include scalar potentials proportional
to r and to r~ . It is solved by analytic methods. The linear dependence upon radius leads to spectra
similar to that of the harmonic oscillator except that the approximately constant level distance applies to
E? instead of E. A large negative term in the rest mass displaces the equilibrium point of the oscillator to

a large radius.

I. INTRODUCTION

A scalar potential in the Dirac equation is equivalent
to a dependence of the rest mass upon position. Of par-
ticular interest is the case in which the potential is a
function of radius about a fixed center. Such potentials
appear in the “quasi-independent” models''? and “bag”
models®'* of hadrons. It is known that the Dirac equa-
tion is readily solved when a scalar 1/7 term is added.®
It is the purpose of this paper to present the properties
of the solutions when the rest mass is generalized to

m(ry=u+r/r+ i, 1

where ¢ is the mass of the free particle and A and «
characterize the scalar potential,

The term in Eq. (1) proportional to » produces eigen-
states all of which are bound. Its presence introduces
a regular singular point in addition to the one at »=0.
Consequently the second-order differential equations
for the Dirac amplitudes are of the same general type
as those for spheroidal harmonics. Methods for finding
eigenvalues for such equations are known®"’ and will be
applied to the Dirac equation in Sec. III.

The system of units which we use is that in which
i=c=1.

With the customary definition of the Dirac matrices «
and $ the equation for ¥ is

(E +n/v)=(a, Py +m(r)By. (2

The parameter 7 corresponds to e? in the hydrogen atom
and is positive for a negative potential. Equation (2) may
be separated in spherical coordinates. When m(7) is
given by Eq. (1) the two functions of radius, ® ¥, and ¢,
called the large and small components respectively,
obey

[E+n=N/r~pu= v+ +[G+1D/7l=0,
[E+m+N/r]+u+ ], - g +[G- 1)/l =0,

where if I is the orbital angular momentum in ¢, j
=1+1 when the total angular momentum is Z +3, and
j=~1 when the total is {—%. The prime denotes differ-
entiation by 7.

(3)

In the following section we review briefly the proper-
ties of bound solutions when k=0 for which the general
method of Sec. III is sufficient, of course, but not
necessary.
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It. BOUND STATES FORk =0

When k=0, Eq. (3) is basically the same as those
for the hydrogen atom.® The solutions are of the form

Yo =Sl .
h =gn(r)} 7 el (- B, (@

where f,(7) and g,(7) are polynomials of degree #. The
index is readily found to be

s=(7'2+7\2_1,2)1 /2’ (5)
and the eigenvalues of energy are given by

(n+s)(u2- EH/2_ En+ ux=0, (6)
or

E _M)+(n+s)[(n+s)2 +772— 7\2]1/2
md (n+s)*+1

Thus levels with the same # and 7% are degenerate ex-
cept for n=0 for which there are no solutions with neg-
ative j.

(7

Setting A=0 in Eq. (7) leads to the well-known formula
for hydrogenlike spectra with 7=2Z¢?. The strongest
binding occurs for n=0, i.e.,

Ey ;= u(®- ™ ?%/jl, (8)

which approaches zero as n~1, if j=1, The next low-
est level in that limit is doubly degenerate with quantum
numbers n=1, j=x1, viz., Eyy=3uV2.

One sees from Eq. (6) that bound states for 7=0 oc-

cur when X is negative. The positive eigenvalues are
E=pu[1-(\/n+s)?}/2, ©
s=(2+ 372\ <o,

When A is near zero the spectrum is the same to second-
order as that for the H-like atom with A2=1?, Strongly
bound states arise as A —— *; expanding in negative

powers of |2l we find
E2=yu2[2n/ |\ + (%= 3n®) /A2 + ... ]. (10)

Therefore, all states for which 7? and j% are small com-
pared to A2 approach zero energy as A ~-«, Also, ex-
cept for »=0 (the nondegenerates states) the eigenvalues
approach independence of j. When =0,

E, =ju/|A]. (11)
The resemblance of Eq. (10) to the formula for the
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FIG. 1. Curves of equal ground state energy when k=0, in the
A—n plane. They are straight lines terminating on the n>0
branch of the hyperbola n?=1+ A%, Labels give the values of E/
u.

harmonic oscillator spectrum is a consequence of the
fact that when X <0 the effective mass becomes negative
inside ;= |x|/u. Therefore at » <7, the scalar poten-
tial creates an outward acceleration. In effect the par-
ticle is trapped in the neighborhood of »=#,. This is
verified by the nature of the wave function, Eq. (4),
which when A% is large, is proportional to the product

of a high power of » and a decreasing exponential. Thus
the low-lying wave functions are of the “bubble” type.*
The relation between states concentrated at a large ra-
dius and those of the harmonic oscillator is discussed in
detail in Sec. IV.

Between the two limiting cases presented above there
exists a continuum of values for n and A that lead to
bound states. The necessary conditions on 7 and X are
that s and (£%2— E)!/% in Eq. (4) be real and positive.
From Eq. (5) we see that the limitation is most severe
when j2=1. Therefore, we consider the possible ground
states (n=0) for j=1. Let us define the angle 6 to be
such that

Eyy=#sing, (p®-E%,) /2=y cos.
From Egs. (5) and (6) one readily finds

s=ginf - xcosh, n=2Arsind +cosb. (12)
In order for (u?-— EOJZ)1 /2 and s to be positive, we need

7/2>8>~71/2, X<tanf. (13)
The linear relation between 17 and A, Eq. (12), is illus-
trated in Fig. 1, where the lines are labelled by their
value of E,;/¢. The lines terminate at A=tanf =&, ,/

(p2~ Eoylz)1 2 on the 1> 0 branch of the hyperbola 7
=1+x2
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11l. GENERAL SOLUTION

We now consider the general method of solving Eq.
(3). Let f{v) and g(») be series in nonnegative powers of
v with leading terms f, and g, respectively, and write

wa :f(/r)} Vs-l exp(_ Wy - é KZ’VZ)°

ZPb:g(V) (14)
The equations for f and g are
(E+ (m=N/r=u-rlf+g
. 2 —
+{(s+j) /v = p—KPrlg=0, (15)

[E+(n+N/r+u+rle~f
=ls=/r=p-Er)f=0.
As 7~ 0 we must have
(M= Nfy+ (s +1)gy=0, —(s-7f,+(n+Ng=0.
The vanishing of the determinant of these equations gives
us s as expressed in Eq. (5).
In developing the series it is convenient to define
P=ft+tg, Q=/-g, (18)

whose differential equations as derived from Eq. (15)
are

Q" +[(s +N/rlQ=[E+(n+j)/»]P

(17)
P +[(s=N/r=2p-2nP+[E+(n-7)/7]Q=0.
Substituting
P:ZO/pkr’*, Q=21q" (18)
0

into Eq. (17) and applying the latter to the coefficients
of ¥*, we obtain

(k+1 +S+>\)qk+1:Epk+(n+j)pk+1’ (19)
(R+1+5 = NPy = 2upy, — 263y 1 + Eqy + (M= )pay = 0.
(20)

Eliminating ¢, and g, from Eq. (20) by using Eq.
(19) and multiplying with (k+s+2) (k+1+s+)), we get

Apbrar T Bpbp + Cppry =0, (21)
with

A=+ 1) (E+2+s)k+2s5+1),

B,=E(j+m+2(h+2+38)EN~p+1+r+s)], (22)

Co=(F+1+s+N[E2-2(k+x+s)k?].

Since p, vanishes for k<0, we see from Egs. (21) and
(22) that p, is arbitrary and that

Ay +Bp,=0. (23)
Equation (23) determines the eigenvalues E because p,

is related to all p, through Eq. (21) and the p, must form
a suitably convergent series for P of Eq. (18).

When «#0 and as k£~ Egs. (21) and (22) show that

kP ~ 26%ppy + 21py.

Therefore, in order for ¥, and ¢, to be normalizable,
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FIG. 2. Spectrum of E2/«? vs j when n=A=p=0. Lines at odd
integers represent the energy eigenvalues for the nonrela-
tivistic isotropic harmonic oscillator.

the series for P must converge at large » like the
series

i(n!)'”z(—ﬁxr)".
0

Thus

by = byl +O(1/k)] <0, (29)
where

by =Dp/Pr1. (25)

When p, #0, we may write Eq. (21) as

Aoy + B, +C,/b, =0, (26)
from which we find

by == Cp/(Apbpy + By). @7

The procedure for finding eigenvalues’ is to choose
a trial value for £, select a sufficiently large N and
approximate Eq. (24) by by,; =by. Equation (26) is then
a quadratic equation for &y with the negative solution

by ==~ (1/2A5)[By + (B% - 44,Cy)' 2]. (28)
For k<N each b, is determined from b,,; by Eq. (27).

If the trial value for E is such that Eq. (23) is satisfied,
with py =byp, it is an approximation to an eigenvalue and
will be designated as £,. The process involves approxi-
mating an infinite continued fraction by a finite one so
that the true E is bounded by Ey and Ey,,, and as N be-
comes greater 3(E, + £, ,,) is an increasingly closer
approximation to the true value.

The parameters 7, A, & may be such that the true eigen-
value being sought causes C, in Eq. (22) to vanish for
some k=v, where v>0. Equation (27) shows that b,
vanishes in such instances and hence p,=0. But the
method entails division by p, and thus formally does not
apply. However, Eg. (21) for #=v shows that when p,
and C, vanish, so does p,,; (4,#0 for v > 0) and there-
fore all p,,; =0, i>0. The resulting series for P, Eq.
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(18), is then a polynomial of degree v - 1. One of the
roots for E in the finite continued fraction must agree
with one of those of C,. Conversely one can find other
values of the parameters for the same E and j as roots
of polynomials, and use these discrete points to sketch
out the continuum of solutions. Some care is required to
connect the roots properly.

IV. SOLUTIONS FOR x +0

Bound states that are produced by the 1/% terms alone
in Eq. (3) have been examined in Sec. II. We now take
up the investigation of solutions when x >0. The asymp-
totic form of Eq. (14) at large 7 is dominated by the
factor

expl- (1/2)k*7?].

The wavefunctions are therefore related to those of the
harmonic oscillator of mass M and frequency w if we
interpret k as (Mw)t 2

The parameter k may be considered as the unit wave-
number, but there remain three free parameters in Eq.
(3), viz., m, A, and k. It is desirable to restrict study
to a few key choices for these parameters. The obvious
beginning is to determine the characteristic effect of
a finite « and set

Under these conditions we use Eg. (3) to derive the
coupled second-order differential equations for ¢, and
Py, i.€.,

Y7+ (2/7) +[E2 = (G = 1)/7% = r2Jg, - k23, =0,

(30)

Uy +(2/7)dy +[E* = jG + 1)/7% = k* 2], — 124, =0,
These are to be compared with the equation for the non-
relativistie, isotropic three-dimensional oscillator
whose wavefunction we shall call ¥,

by +(2/7) g + [2MW = L1 + 1) /7% = M2w*Jp,=0, (31)

where W is the energy. From the definition of j in Sec.
I we have j(j — 1) =1(I + 1) so that the terms in »2 are
the same for ¢, and the large component #,. In the non-
relativistic limit we can ignore the small component
and the equations for ¥, and ), become the same if we
set k=(Mw)'’/? as noted above and replace £2 by 2MW.

The eigenvalues of Eq. (3) under the conditions set
in Eq. (29) were determined by the general method of
Sec. III. Results for E2/«% in the ten lowest levels are
plotted against j in Fig. 2. The levels are represented
by short heavy bars. The corresponding eigenvalues of
Eg. (31) are the horizontal lines representing

2W/w=2n+3, (32)
The similarity of the two spectra is evident. Spin
doubles the number of levels when ! >0 and there is a
slight spin-orbit splitting which, of course, is “anom-
alous.” Numerical values are presented in Table [
where » is half the integer nearest (£2/x%) — 3. This is
the same # as in Eq. (32). Any positive E which belongs
to a given j also represents a state of energy — E be-
longing to - j.

These relativistic “harmonic oscillator” states are
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FIG. 3. Three examples of the linear scalar potential. The
dashed line shows the apparent potential energy inside v, when
p<O0.

quite different from those derived by postulating a lin-
ear restoring force.®!® The results presented here are
more closely related to the classical motion of a par-
ticle whose mass is a linear function of position. In one
dimension let ¥ be the position and ¥ the velocity of a
“free” particle whose mass is ¥?x, Its energy is then

H=v2x(1 -x®)1/2 (33)
with an obvious solution in harmonic motion,
x =Hy?sin(H142f),

Although the force is everywhere negative, when x <0
the mass is also negative and the acceleration becomes
positive. Note that the time averaged mass is zero and
that adding a constant in the numerator of Eq. (33) does
not change the average mass but shifts the equilibrium
point of oscillation.

These considerations suggest that the next step in the
investigation is to keep 7=A=0 but take ©£#0, Three
typical possibilities are illustrated in Fig. 3. The spec-

TABLE I. Eigenvalues of the ten lowest states for n=x=p=0.
The quantum number # is the integer nearest 3(E%/k%~3).

n j E/k E?/k?
0 1 1.6194 2.6226
1 -1 2.2940 5.2626
2 2.1465 4,6076
2 -2 2.7044 7.3138
1 2.6026 6. 7737
3 2.5693 6.6012
3 -3 3.0560 9.3390
-1 3.0310 9.1871
2 2. 9520 8.7141
4 2.9322 8.59717
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trum presented in Table I is that for the curve u=0.

A positive 1 leads to a potential like the curve for u = «.
Obviously its spectrum will be very similar to that for
4 =0 with some fraction of 1 added to each term-value
for £. As { increases, the motion becomes less rela-
tivistic and the fraction of ¢ which is added approaches
unity. Thus a positive & acts like a true addition to the
rest mass. Results of calculation for some of the lower
levels appear in that part of Fig. 4 corresponding to

W/ k>0,

The situation that arises for negative u is illustrated
in Fig. 3 by the curve labelled u=-0.75 k. Inside the
radius 7, at which m(ry) = p + k®», =0, viz.,

¥y=— UK, (34)

the scalar potential produces an outward acceleration.
The apparent potential energy inside 7, is shown by the
dashed line. Just as in the classical example ~ i acts
as a displacement of the neutral point of oscillation. In
the limit of large — i the motion approaches that of an
oscillator in one dimension; the average mass approach-
es zero and the states are highly relativistic. The states
that arise in the SLAC bag model! are of the same type
but not identical because in that model the mass is not
a simple linear function of radius. Also in this limit the
radial function ¢, becomes almost equal to — i,.

E/x

r_

wn/x

FIG. 4. The lower energy levels as functions of ¢ when =2
=0, The dashed line is one example of the spurious results
from the method of infinite continued fractions when p<0. The
open circles give a few results when the continued fraction is
finite,
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FIG. 5. Curves of equal ground state energy when p=0, in the
A—n plane. Labels give the values of E/«k. The dashed lines
show the limiting hyperbola, n?=1+2A%. Lines for E/x between
1 and 3.5 are not shown to the edge of the graph because of the
very large N (> 2000) required for convergence in that region.

Let us put
y= (Zpa - Z[)b)’l’,

and derive from Eq. (3), with 7=X=0, the second-order
equation for v,

v HER 4= 2/ = (1 + Pl + (/7 ) (8 + 9) = 0.
(35)

When -~ 1 >> k the wave function is concentrated about
¥, which, from Eq. (34), is much larger than ! and
we may approximate 2 in Eq. (35) by 7;%. The inhomo-
geneous term in Eq. (35) is the product of two small
quantities and will be ignored to obtain the equation for
the asymptotic form of y which is denoted by ¢, i.e.,

" +[E2+ k2= j2r? — A r=vp)Elo=0. (36)

Equation (36) has the same form as that for the one-
dimensional oscillator and may be solved in the familiar
way to obtain the eigenvalues,

E?=(2n' +72k2 "2 k2, 37

Here 1’ is a nonnegative integer which may be expressed
in terms of » and 7 of Table I as

n =il20- 3] +3-5/1]1. (38)

The close relationship between Eq. (37) and Eq. (10}
is quite evident. Both arise from the effect of a negative
mass inside a large radius. It will be noted that the
ground state spectra (r=n»"=0) are formally the same
when p2/X% of Eq. (10) and «*/u? of Eq. (37) are con-
sidered to be equivalent. Also, from Fig. 4, we see
that states belonging to #»’ = 0 all have total angular mo-
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mentum ! +%, i.e., j>0. This agrees with the results
for 1/7 potentials in which the only solutions for n=0
belong to positive j. The weak dependence upon j% in the
asymptotic limit is the result of the motion becoming
essentially one-dimensional.

The curves in Fig. 4 for 4 <- 3k were calculated
using Eq. (37). Between ¢ =- 3k and ¢ =0 the general
method of Sec. III cannot be applied because for all
14 <0 that method converges to eigenvalues for non-
physical states. More specifically the curves obtained
for E vs i, 1 <0 have negative slope and that is not
acceptable in states of positive energy for which the ex-
pectation value of the operator 8 cannot be negative.
One sees from Eq. (2) that the average values of 8 and
of 0E/9u are the same. A single example is given in
Fig. 4 by the dashed line which is a locus of eigenvalues
for j=-1 and is the mirror image (about u=0) of the
acceptable locus for j=1 and &> 0.

The gap between u =<3k and u =0 was filled in by
several means. For one thing some of the polynomial
solutions fall in that gap as shown in Fig. 4 by open cir-
cles (only a few such solutions are shown). Secondly,
for the lowest states of each j the calculus of variations
was applied to the expectation value of E2, In fact, mini-
mizing the expectation value of E produces very good
results when f and g are approximated as quadratic func-
tions but then one has no guarantee that the result is an
upper bound. Mostly the curves in this region of ¢ were
calculated by numerical methods on finite matrices.!

Also shown in Fig., 4 are a few examples of the poly-
nomial solutions for P, When A=7n=0and j=x1, s=1,
C, of Eq. (22) becomes

C,=(k+2)[E2~2(k+1)x2].

Since C; never enters the calculation there is a poly-
nomial solution whenever E?/«? is an even integer great-
er than 2, Thus when C, =0 the positive eigenvalue is

E =2k and p, =0. Equation (23), by using Eq. (22), is
then

By=Ej-4u=0, j=z1.

Hence u=3k for j=1, i.e., the 18,,, state and pL=-%«
for j=-1, which is the 1P, /, state. Both solutions ap-
pear in Fig. 4 as the lowest pair of open circles. When
C,=0, Egs. (27) and (22) show that

by =—C,/By = 3(E% - 4«?) /(Ej - 12),

which when used in Eq. (23) produces a quadratic for
4. The larger solution p =1, 0537 k appears as the sec-
ond point on 18, ;, and its negative is shown on 2Py ,,.
The other solution, p=-~0.2372 «, falls on the curve
for 28, ,, and its negative on 1P, ;, but these are not
shown in Fig. 4. The selection of such points to be dis-
played was made in order to emphasize the fact that
polynomial solutions also fall on curves for spurious
eigenvalues as they do here on the dashed line and that
one must take care in using them to construct energy
curves,

In Fig. 5 are shown the loci of admissible ground
states as functions of  and X for u=0. The curves are
labelled with the value of £/« to which each belongs.
The limiting hyperbola is shown by the dashed curves.
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FIG. 6. Positive ground state spectra for E/« as a function of
n when p=«, The curves are labelled with their value of A.
Note that all those for nonpositive A converge at E=0, n=1.
The solution which appears in Fig. 4 is marked with a cross.

The loci are no longer the straight lines of Fig, 1 for
k=0 except for 7=1 which persists as a singular locus.
This arises from the fact that when n=1, s =[x} so that
s +x=0 when x<0. Then, in Eq. (22), A;=B;=Cy=E
=0 for all negative A, That E=0 is the limiting value
under these conditions is shown in a different way in
Fig. 6, where the loci of positive ground states for
L=« are shown in the E - 1 plane. The curves are la-
belled with their values of A. It is to be noted also that
B,=0 for all negative A whenever 1= - j. This merely
implies that one must avoid such input data.

V. CONCLUSION

Energy eigenvalues for the Dirac equation in which
the mass has been generalized as in Eq. (1) are readily
found as roots of infinite continued fractions. In prac-
tice one finds the roots of finite continued fractions. The
results converge upon physical solutions, however, only
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when p, the constant term in the mass, is not negative.
Other means of computation are needed when <0 (ex-
cept for isolated polynomial solutions which arise when
the continued fraction is truly finite).

A positive linear scalar potential in the Dirac equa-
tion appears in the Klein—Gordon form as the quadratic
potential for harmonic motion in the nonrelativistic
limit, As a result the eigenvalues for E? bear a close
resemblance to those for energy of the three-dimen-
sional oscillator, although the physical origin as a ra-
dially dependent mass is quite different from the ordi-
nary prescription. The isotropic oscillatorlike spectrum
dominates when u is not negative.

Large negative values of u, or a large negative 1/7
scalar potential, lead to highly relativistic, one-dimen-
sional (radial) harmonic motion about a finite radius.
The corresponding wave functions are concentrated
about that radius and are thus of the “bubble” type.
When both scalar and vector 1/7 attractive potentials
occur all ground states have zero energy for n=1.

Detailed consideration has been limited to states in
which the average value of Dirac’s 8 operator is posi-
tive. Corresponding solutions for states in which () <0
(the negative energy states for a free particle) are
readily deduced from the obvious symmetry of Eq. (3)
under interchanging ¥, with ¢, and reversing the signs
of E,j, and 7.
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Bilinear quantum field theories and their coherent states*
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The quantization method developed by Hammer and Tucker, which is based upon a set of equations of
motion and their conserved currents rather than a canonical formalism, is extended to interacting systems.
The operators of the theory are bilinear and are essentially self-adjoint on a dense domain which is spanned
by a suitably chosen subset of the coherent states. Both proper and improper gauge transformations of the
second kind are discussed. For the proper case, the connection is given between these transformations and
coherent states, which are discussed in detail. One interesting result is that a “smeared” Fock space can be

constructed for a system where the particles have the same average quantum numbers. For the improper
case, the gauge transformation of the second kind is related to the purely absolutely continuous measure.
The formalism is applied to two examples. One is a Dirac field minimally coupled to a massive vector field,

and the other is Klauder’s ultralocal models.

1. INTRODUCTION

A basic problem in quantum field theories is the
formulation of atheory which can, at least eventually,
lead to a nontrivial scattering matrix. While field theo-
ries based upon a Lagrangian formalism may have this
property, there are a number of mathematical reasons
for seeking an alternative approach. In fact, for some
rigorous soluble field theories no Lagrangian nor ca-
nonical theory exists.

However, the formalism originally developed by
Takahashi! and Hammer and Tucker? (HT) which is
based upon free field equations and the conserved cur-
rents which are derivable from them does not suffer
from these same difficulties. Furthermore, the sym-
metry operators derivable from the conserved cur-
rents are bilinear forms. This has important mathe-
matical consequences. Reeh® and Kastler, Robinson,
and Swieca® have shown that any symmetry operator
must diverge at least as fast as , ¥ —«,in the weak
limit. This suggests investigating the coherent states
as a possible domain for symmetry operators for bras
and kets of matrix elements. In his study, Klauder®
showed that the most general self-adjoint field opera-
tors are simple bilinear expressions in terms of crea-
tion and annihilation operators. These methods and
techniques are directly applicable to the HT formalism.

In this paper the HT formalism is extended to include
interacting systems. Bilinear objects, called gener-
alized currents, including g-number—g¢g-number, ¢-
number—c-number, and ¢-number—c-number will be
used throughout. Various symmetry operators are con-
structed from these forms and their properties are
investigated. Of particular importance is the gauge
transformation of the second kind

U, (x,)=exp[Z,(x,)],

where Z  is a g-number—c-number bilinear form. This
transformation can be used to construct coherent states
from the vacuum whenever ¢ = L*(RS, du). For suit-
able non-L? functions, ¢, the transformation is related
to a purely absolutely continuous measure.

(1.1)

The organization of this paper is the following. In Sec.

2, the Hammer—Tucker quantization procedure is gene-
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ralized to include interactions. Then in Sec. 3 this pro-
cedure is illustrated by the example of a Dirac field mini-
mal coupled to a massive vector field. This example is
nontrivial because no Lagrangian exists which gives all
of the field equations. In Sec. 4 the gauge transforma-
tion of the second kind is introduced and coherent states
including their relationship to c-number—c-number
forms are discussed in some detail. A smeared Fock
space is developed which has a discrete spectrum of
average quantum numbers, rather than the usual “sharp”
eigenvalues. In Sec. 5 we discuss the c-number Hilbert
space, operator extensions, and a distinguished family
of non-L? golutions to the field equations. These solu-
tions give a representation of the fields which is unit-
arily inequivalent to the Fock representation. In Sec. 6
we use the extended HT method to reproduce the ultra-
local model solutions of Klauder.5"1° In Sec. 7 our con-
clusions are listed.

2. METHOD OF QUANTIZATION

One essential feature of including nontrivial inter-
actions is that a general field operator must be at least
bilinear in the Fock-representation operators 3'(x),
P{x). Since the conserved current is a naturally occur-
ring bilinear, the method of quantization first proposed
by Takahashi! and Hammer and Tucker® (HT hereafter),
which is based upon conserved currents, will be used
here, This quantization method has been discussed
primarily within the context of free fields, excepting the
arbitrary spin electrodynamics constructed by Tucker
and Hammer, !! The purpose of this section is to review
the HT formalism and to extend it to the interacting
case,

Let ¢ denote an operator valued solution to the con-
figuration space partial differential equations,

D) =jx), and ID(-3)=7(x), (2.1)

where j(x) is a source term, D(3) is a configuration
space differential operator, and

P =lrp@l, j@& =i,
and

D' (@)y,=—7"iD(-2).

2.2)
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The quantity y, is the [2(2s + 1) X2(2s + 1)]-dimen-
sional generalization of the Dirac matric ¥, only when ¥
is a field constructed from symmetric spinors of like
indices. Otherwise it is a matrix which is chosen to in-
sure the Lorentz transformation properties of the con-
served current. A general four-vector A, is written in
terms of real quantities A, ({=1,2,3) and 4, as

A 0 v
_ i _ i\
A, (iA0>’ and au_(_l.a())_ _ia_ (2. 4)
ot

The functions «,(p, x)and v,(p, x) are homogeneous
c-number solutions to

D(@)u,(p, x)=0 (2.5)
and

D(a)vr(p) x) :05 (2- 6)

where 7 is a set of discrete quantum numbers, p is the
three-momentum, and x is a space—time point. Their
charge conjugation properties are
u,(p, x)=Cv}(p, x), @.7)
v,(p, x)=Cuf(p, x), {2. 8)

where * denotes complex conjugation and C is a c-num-
ber matrix which satisfies C?2=1. We consider that
class of theories for which a conserved current

J, (g, y) exists with

auJu(d)i’ Zp2) =0,

and which is bilinear in the operators ¥;, ¥;. In general,
#; and ¥, are two independent solutions to Eqs. (2.1) and
(2. 2), and factors of { are chosen in J, such that

Ty, ) =Jy (b, By,
JE@y, o) =Jy (@B, Uy).

The Hermitian adjoint of any ¢c-number operator q is
defined as

Ty, qP) =T 1@ Py, Po).

We know of no general proof that such a conserved cur-
rent must exist although all known successful theories
do have this property.

2.9)

(2. 10)
@.11)

(2.12)

We further assume the existence of a free limit with
a free conserved current, J%, which satisfies

3,d (W, $)
:{-d)iiﬂ(OUt)B(a)wzin(out) _ 'lﬁlin(out)ﬁ( - a)wzin(out)} =0. (2 13)

Note that y, must be chosen such that J transforms as
a four-vector under Lorentz transformations.

The creation and destrection operators for particles
A, A' and antiparticles B, B' are defined in terms of the
zeroth component of J, according to

A, lp, xo)zfde{;(u;(p, x), Px)),

Allp, x,) = [ axdj(¥(x), u,(p, %)),

Bl(p, %)=/ dxJi(w,(p, x), ¥x)),
and

B,(p, %) = [ dxJi(p(x), v,(p, ).
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The reader is especially reminded of an implied Hermi-
tian conjugation of operators (complex conjugation of
c-number solution functions) in all left arguments of
J(, ) or J,(, ). Also, we call attention to the fact that
the particular bilinears in Eq. (2. 14) all consist of
mixed pairs of one g-number and one ¢c-number. The
“in” and “out” creation and destruction operators for
partic}es and antiparticles are defined as

ZI/Za%n(uut)(p) =w-lim {Al(p’ xl))]f

xg wo ()
21/ g o) ()t =w-lim )[Ai(p, xp)l,
£y -l

21 /Zb}n(out)(p) =w-lim [Et(p, xo)]’

xg =o()

(2.15)

and
2 b ()] =w-lim [B}(p, )],
xg™ == ()

1/2

where z'/°is a renormalization constant.

The HT quantization postulates for Bosons (-) and
Fermions (+) are

j.dou(x)Ji(ul(py x)! um(qa x))

=~ [ap©t (p), aire (@)],, (2. 16)
and

Jdo, ), (p, %), v, x))

I [b;n(out )(p), b:"n("“ )t(q)]*, (2 17)

where do, (x) is an integration variable over a spacelike
surface o, (x) which contains the point x. In this con-
struction as x, —~ ¥, an operator { has the limits

$) =229t + [ dyGrlx ~ v, miYilx), (2.18)

Yy =212 gt ) + [ diy Gl —y, m)ix), (2.19)
where

D(a)d)in(out)(x) — O, (2' 20)

and where Gz and G, are the retarded and advanced
Green’s functions for D(3), respectively.

Remark: The sets of functions {u,, u,*} and
{V,, v#} need not be complete, orthonormal sets. For
example, they could be wave packet solutions to Egs.
(2. 5) and (2. 6) or c-number coherent states. In the
special case where the #’s and »’s are a complete set
of plane wave functions, the quantization postulates
Egs. (2.16) and (2. 17) become

S do (), (p, %), un(@, ¥)==p(E,)5,,6(p-q),
(2.21)
and
S do, )@, (B, %), va(Q, x))=-p(E,)b;,0(p - q),
(2.22)

where p(E,) is an energy density of states factor, and
HT reduces to the Yang—Feldman!? formalism. Also,
when the «’s and v’s are not a complete orthonormal

set, Eqs. (2.14) and (2. 15) cannot be inverted to give
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¢ and p in terms of the A’s and B’s although a complete
theory exists in terms of the bilinear J%( , ).

Some nonvanishing commutation relations which
follow from the quantization postulate include

[a§n(°ut)(p)7 E‘n(wt)(x)]t':z-"l(p’ x)y

(2.23)
[b}"("“”(p), zpin((:'ut)(x)]t =vl(p’ JC),

and
[ipin(out)(x)’ 'z'/)'ln(out)(_,y)]é - G(x -y, m%)’ (2. 24)

where G{x —y,m2) =Zu,(x)u,(y). If the sum on! is over
a complete set of states, then G(g)=G,4(2) - Gg(2).

Following HT, a g-number operator ¢, is defined in
terms of a corresponding c-number operator g, as the
g-number—¢g-number form

Q:n(out)(xo):fde(f)(d)ln(out), qrwin(out)).

If, furthermore, g, =5, is a self-adjoint, c-number
symmetry operator, then

[s,, D@)]=0,

and the corresponding g-number operator S is time
independent. It follows from Theorem 3 of HT that

(2. 25)

(2.26)

[win(ogt)(x)’ S,i'n(out)] — srd)in(out)(x)’ (2. 27)

and
[S:n(out)’ S,‘:(out)]=fdx:fdf (;j)ln(out)’ [sn sm]d)in(out)'
(2. 28)

Therefore, S*°**’ s, have the same algebraic proper-
ties and they must generate corresponding symmetry
transformations in their respective Hilbert spaces.
These equations also imply that any $'*‘*(x) with a
dense set of analytic vectors transforms finitely as

o in(out) i sinout)
e ias u d)ln(out)(x)e as zeiaslpxn (out)(x)’ (2. 29)

where o is a real parameter. Since S**©%’ is indepen-
dent of x, this transformation can be used to show that

-asinfout) i gsinfont)
e oS Q;n(out)(xo)elas

- ~iasinlout) i iout) i o sintout)
= [ axTi(e P (s)e ,

- in{out} in(
a,e 1 sinfou lpxn(out)(x)eias n °““) (2.30)

or that, infinitesmally,

[Q:n(out)’ S,‘,,n(o"‘t)]=fd&]€(d)h(°u”, [q'n sm]zpin(out)).
2.31)

Thus, Q!*‘“*) has the same tensor properties under the
symmetry generated by the {Si*ubg a5 4 does with
the {s,}'s.

It is important to note that the commutation relations
between general operators Q:“(“‘”(xo) are fixed by the
form given by Eq. (2. 25) once the g, are defined. Con-
versely, a commutator algebra for the @*'*(x,)
suffices to define the operators ¢,.

For example, if J5(PY g 18 can be put into
the “canonical form” described by Schweber!® ag
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J:g(zpin(out)’ qrd)ln(out)) :Ziﬂ,:n(cut)qrw:n(out), (2 32)
where ¥} and 7{***) are the independent fields and

their canonical conjugates, then it is easy to show that

[Q:n(out)(xo)’ Q:\(out)(xo)]:fdeﬁ(ZPin(out)’ [qr’ qm]lpln(out).
(2. 33)

These equations can be used to define g, if the ¢g-num-
ber algebra is given. The position operators ot
Fleming!* and Sankaranarayanan and Good, ! where

g, is not the simple spatial variable x, are typical exam-
ples. However, a g, satisfying Egs (2. 32) or (2. 33) may
not exist for g J’g of arbitrary form so that, in general,
g, and @, may have different commutation properties.

The free field Fock space generators of the Poincare
group such as the energy-momentum B*°"" the angu-
lar momentum-rapidity M2*® and the charge opera-
to @™t are given by

( (out in(
P:n out) :fdeO(wln ou ), puw n out)) ,
Min(out)

inlout) intout
M), =fdx;]{(zl)“°“ , m gty

and

Qin(out) ___fdeg (win(out), l’bln(out))' (2 34)

These imply the corresponding equations of motion:
[ytatout) () p;n(out)] =pb in(out)(x),
[ win(out)(x)’ MZ“J"“”] _ mu,,z[)in(mt)(x),
[ytatout)(y)  @intout)) zqowin(out)(x)’

where p, and m,, are the configuration space, ¢-number
generators of the Poincaré group and q, is the renorma-
lized or observed electric charge. For example, p, is
given by

(_iv. 2
)

The generalization to the interacting case is straight-
forward. In parallel to Eq. (2.25), an operator is de-
fined in terms of an interacting (not free!) unrenormal-
ized conserved current J, according to

Q,(xy) = J AxJy (¥, q,¥).

Then if (g,¥) is also a solution to Eq. (2.1), @,=S, is an
exact symmetry operator for the system. Since S, is
time independent, J; can be evaluated in the w-limit at
t—zx giving

_ in{out)
Sr_KSr " ’

(2.35)

(2. 36)

(2.37)

(2.38)

where the proportionality constant K is some function of
the renormalization constants.

For a general interacting current J,, it is necessary
to postulate that the fields ¥ transform according to

(2.39)

where S (and s) is a self-adjoint, exact symmetry opera-
tor and & is a real parameter. Infinitesmally, one has
that

[y, S]=su. (2. 40)

The transformation property of an operator @,(x;) under
the symmetry operator S is then

e o5Q,(x)et* 5= [ dxd, (, et*%q,e'*y),

e-iasweias = et aszp(x)’

(2.41)
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This result can be used to show

[Q,, S.)=/dxJ,(¥, [a,, s.]0). (2. 42)

Just as for the free particle case, the tensorial proper-
ties of @, follow from those of S.

Note that Schweber’s canonical form holds for inter-
acting fields as well as noninteracting fields so that the
discussion in the paragraph which includes Eqs. (2.32)
and (2. 33) also applies to the interacting case. Thus, the
tensorial and algebraic properties of @,(x;) are then in
one-to-one correspondence with those of Q') since

w-lim [Qr(x(}}] =XQ:“(°“”’

LI A

{2.43)

where again K is some function of the renormalization
constants. The unrenormalized interacting Poincare
generators and the charge operator become

P=[dxJ,(, -ivy),

. 0
H= s
dxJ |y, zatzb>,
4 juu =/‘de0(ZP’ “luuw)’

and

Q=qf dxJy(y, ¥), (2. 44)

which is completely parallel to Eq. (2.29). The require-
ment H be self-adjoint implies that substitution from Eq.
(2. 1) can be made such that

1= fawr(iZ0) 0, ).

While this discussion is adequate for the purposes of
this paper, it is oversimplified to the extent that an inter-
acting system may have more than one field equation and
more than one conserved current. Then the various
generators can be defined in terms of the sum of the
independent currents. However, for the particular case
of the system Hamiltonian operator, care must be taken
to not multiply count the various interactions. See
especially Tucker and Hammer!! on the electrodynamics
of general spin vector mesons for an example of this.

The commutation rules, such as Eq. (2.40), which
symmetries impose on the system, require that

Jaylux, B, Jo((y, D, s¥(y, )], =sv(x, ).

If we further assume that the independent fields are
local,

(2. 46)

[Zp{(x: xO); ij(y, xO)]t=0 (2-47)
or quasilocal,
[w,’(X, x[)), wj(y, XD)]*_’O, (2~ 48)

as |x—yl| — =, then one expects that Eq. (2.46) is suffi-
cient to derive the remaining equal time commutators.
While no general proof for this exists, it is certainly
true for canounical theories such as those which satisfy
Eqg. (2.32). Then Eq. (2.46) dictates, for the local case,

(¥:(x, x0), 7;(y, %)), =78;,;8(x~y), (2.49)
the usual canonical rule.

In summary, the form of J,(, ) is determined by the
equations of motion Eq. (2. 1), and any relativistic field
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theory requires Eq. (2.39) or (2.40). These equations
together with Eq. (2.37), which defines the g-number
operators, ensure the covariance of the theory. These
requirements give necessity conditions for the equal
time commutation relations, if any. The locality or
quasilocality postulate is a separate and distinct assump-
tion which is not required. Therefore, our approach
does not requre the existence of a Lagrangian, a canoni-
cal structure nor locality in general, although it can, of
course, accomodate any of these notions,

3. EXAMPLE, A COUPLED THEORY, DIRAC-
MASSIVE VECTOR FIELDS

For a nontrivial illustration of our formalism, we pre-
sent a coupled system comprised of a Dirac field and a
massive vector field. In particular, consider the system
as specified by the field equations

Yu®u = qAK) =implx), (3.1)

D+ MDA, (%) =igy (x)y,p(x), (3.2)
with the “Lorentz condition”

3,4,(x) =0, (3.3)

where it is clear from the Hermitian conjugation proper-
ties of the right-hand side of Eq. (3.2) that

Ai:(Ai)*’ AO :AE9 (3'4)
and where
n=2—v2 (3.5)

This system poses some formal difficulties for a
Lagrangian formalism, even for the free field case
because not all the components 4, are independent. If
Egs. (3.2) and (3.3) are recovered from a Lagrangian,
then A, has no canonical partner, This makes the proce-
dure for obtaining the Hamiltonian and other physical
operators unclear, and at best, ad hoc.

If the Lagrangian is defined with an auxiliary field
which is the canonical partner of A,, then Eq. (3.2) is
not the field equation for A,., Equations (3.1)—(3.3) are
recovered only after a series of complicated
transformations.

The free field conserved currents are given by
Jf(wi-n(out) Z1)2in(out)) :iiiin(out),y lpén(out) 3 6)
“ ’ i .
for the Dirac particle, and
Kl{(A}“‘“”(x), AlnGut) )y = _ [A'Iis(out)(auA;:(out))
_ (auA-li:(out))Aé;l(Out)] — izitun(out)(x)“é‘uA%:(out)(x)

3.7
for the massive vector particle, The Lorentz transfor-
mation properties of K, require the inner product
(A,+A,) to be a Lorentz scalar for any two solutions to
the free field equations. Thus, both A, and A,, must

be four vectors. This, along with the definition for 4,
implied by Eq. (2.2) requires that

L=y3l0%y,, (3.8)
where L is the Lorentz transformation
Al{lx") =LA {(x). (3.9)
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A suitable choice for ¥, is the metric

g=(g,,) =diag(+1, +1, +1, - 1), (3.10)
which defines 4, as
A, =gAl. (3.11)

In either case, whether A, (x) is a free or interacting
tield operator, Eq. (3.4) implies additionally that

A, =A,. (3.12)

Thus A, is self-adjoint. However, the plane wave solu-
tion to the free massive vector particle equation,

(0+ )0, 0, x)=0, (3.13)
with the Lorentz condition

9, PP, %)=0, (3.14)
is given by

OralD, %) =212 2%, (Ve 5, (x=1, 2, 3), (3.15)
with

(p-e)=0, (3.16)

where p, = (p, iE,), E,= (p2+11/12)1/2, wnereas the adjoint
solution is

O, X)=2,,0%, = 21)3/2g, ex(\e " F

= 2n)° %, (e T, (3.17)
where (p+€)=0. The Lorentz condition and
normalization,

28 8,,:8(0 - @) = | dxK{ (0,0, %), @urula, %),
(3.18)
imply that the polarization vectors satisfy
€M) €M) =By,
and
Deue, () = M2,p,=0,, (3.19)

for each A, 2’=1,2,3 and for each u, v=1,2,3,4. Note
that e=¢ only holds for the case of plane polanzatlon

Additional information can be obtained by examining
the charge conjugation properties of the fields. If the
charge conjugation of the Dirac field is chosen as

CYE)Ct=CY' = 2" (),

then the requirement that Eqs. (3. 1)~ (3. 3) be invariant
under this transformation imposes the condition

CACt=cAT=-4 (3.21)

on the vector field. Comparing this to Eq. (3. 11) shows
that

(3. 20)

C:_g (3. 22)

is a suitable choice for the ¢-number charge conjuga-
tion matrix C, Thus, the charge conjugation plane wave
solutions become

PP, x)=Cot,(p, %)== (@m)3/% (e *

:_aku(p; x), (3.23)
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and
&S (p, x) L2732, (Ne? " *= ¢, ,(p, %). (3. 24)
It is easily verified that
[axif (el @, ), @f @ x)=—2E8,,6(p-q),
[ax&f(@S®, %), ¢pv.@, #)=0,
and
[ axEf (02, %), ¢5u@,x)=0. (3. 25)

The solutions ¢, ,{p, x) and ¢5,(q, x) would form a com-
plete set except for the missing (timelike) polarization
direction. Thus, the homogeneous Green’s function,

which follows from the discussion below Eq. (2. 24), is

2y _dp —
G(x"y, ‘M)_E{/ZED[(pAu(pa x)<p,w(p, »)

— o5, %) 95 ®,1)]
=—i[6,,— M?

]A(x =¥, ‘wz)y
(3. 26)

ox

uau

where

Alx, M?) = (27)7° gERe"" *sin(E x). (3.27)
4

The commutation properties for the free field vector
operators now follow from Egs. (2.15), (2.16) and (2. 24)
as

[Ain(out)(x), A‘i‘n(out;(y)]
=—1i[6,,~ M*

Alx — A/2
ox, o, 120 =, AT,

(8.28)

Finally, the in(out) limits for the vector field are de-
fined as

2}PARC PPy = w-lim | axKf(o,(p, %), A®)),

xg =+ =0 (w)
z%”[A,f”‘"“”(p)]’:w-lir(n dXKf(W (p A(x
Ky =0
= w-lim fdeg(A(x), o, 1),
xo-'-m("“)

(3.29)
with
[Ayu(p), Al (q)] = [axif(p,(p, %), @\ @, *))
=2E,5,,6(p - q). (3.30)
Note that Eq. (3.26) can be used to invert Eq. (3.29) to
give the usual result for A4, (x) and that it is unnecessary

to define a timelike destruction operator for A, in the
present formalism.

The Dirac field is quantized similarly. The u, and
v, denote the usual plane wave Dirac spinors

uy(p, x) =21, (ple" %, (3.31)
and
o (p, x)=(27) %0, ()e™*?* = yui (o, x). (3.32)
Then the destruction operatars are defined as
21/ 2gintou) (p) = w-hﬁn S dxu,’ (p, x)h(x),
tw -0 oo
and
212 py — wolim [ dxy (x)o, (p, *). (3.33)
t+ao(o0)
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The corresponding anticommutation relations become
intout) t intout)
{" @), @)}

= [dxul(p, x)up (@, »)

_E b 5p—1),
m

. (3.34)
{b{n(out)(p) , b;m(out ) (q)}

=fdxv{(p, ), {a, x)
E
:—nﬁéu’o(p_q)’

with all other anticommutation relations zero. The
anticommutation relation for the Dirac fields is the usual

{wi“(m‘t)(x),@i“(m’t)@)}:g(x—y, m), (3_ 35)

where because the u’s and v’s form a complete set,

S$=8, ~ Sg. The free field charge, momentum, and
Hamiltonian follow Eq. (2.34) as
(3.36)
Qin(out) - qof dxzp”’““”(x) Z})in(out )(x)
pinlout) :f dxwfin(out)(x) (- ivw)in(uut)
+ (l/2)f dx{A:'n(out)( _ iv)A{i]n(out) (3‘ 37)

- A:n(out)( — Z-V)A:n(out)},

intout) ___f dX¢Ti“(OUt)(iao)¢in(°ut)

+ (i/z)fdx{A:n(out)(iao)A:n(out) — Ain(out)(iao)A‘i,n(out)}.
(3.38)

The extra factor of 3 in the vector particle part of Eqs.
(3.38) and (3. 39) is required because A, is self-adjoint.
These can be brought into more recognizable form by

substituting the values of (id1"°**)(x)) and A““°““(x))
from the free particle equations. For example, the
Hamiltonian can be rewritten as

Jintout) _ f dxz/f' in(out)(x){ acp+ 77Zﬁ}zﬂ(x)in(°ut)
+ % fdx[(VAin(out)(x)) . (VAin(out)(x))
+A“‘(°"”(x)/-l“(°“”(x) L MAD (out)(x)Ain(out)(x)} (3.39)
v v v v < \J.

For the interacting case, the only obviously non-
vanishing conserved current is

T, (@, ) =idKx)y, ), (3. 40)

which is derivable from Eq. (3.1), and which guarantees
conservation of the unrenormalized charge operator

Q=q/ dxJy(¥, ) =g dxy' x)Y(x). (3.41)
The requirement that

(¢, Ql=q¥, (3.42)
together with the locality assumption

{06), ¥ty - 5 =0, (3.43)

and Eq. (3.41), then imply that
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{d)(x), ll)f(y)}x():yo = G(X— y)’

which coincides with the equal-time specialization of Eq.
(3. 35).

(3.44)

For the massive vector field it is more complicated
to work out the equal time commutators because the
Lorentz condition, Eq. (3.3), relates the various com-~
ponents of A,. There are three independent components
and we follow the usual convention by choosing them as
the three spatial components A, (i= 1, 2, 3). Thus for
local tields the locality assumption is

[44(0), A0, =0, (3. 45)
[4:60), A;0)]eges, =05 (3.46)
and
[4:(x), $0)]eyey, =0 (3.47)

Combining the Lorentz condition with Egs. (3.46) and
(3. 47) yields

[4;(x), A, ., =0, (3.48)

*p=%
and

[0, Ag()]spep, =0 (3.49)

The other equal time commutators are obtained by re-
quiring that the Poincaré generators satisfy Eq. (2.46).
For example, Eq. (2.44) defines the momentum and
Hamiltonian generators as

P =[xy’ (~iv)y+(/2) [ dx{A, (- iV)A, - A, (— iV)A,},

(3. 50)
and
H=[dxd' 3,0+ 1/2 dx{(VA,)* (VA,) + A, A,+ MPAA, }
(3.51)
= [dx o~ (p-qA)+ A+ mpR
+ 4 [ax{VA) - (VA,)+A, 4, + MPAAL (3. 52)

(We always assume normal ordering of operator expres-
sions. ) A natural way to proceed next is to postulate the
free field equal time commutation relations and to see if
they generate Eqs. (3.1)—(3.3) and the necessary
invariants. But this procedure fails for the present exam-
ple and it is necessary to use the specialization of Eq.
(2.46), i.e.,

(¥(x), H]=id49(x), (3.53)

and

[Au(x)7 H]:ia()Au(x)y (3. 53)

in order to derive the remaining equal time commutation
relations. For the spatial components fo the vector field,
Egs. (3.45)—(3.49) and Eqs. (3.2) and (3. 3) can be used
to show

[A;(x), H) fdyA @)[A; (x), (Aj(y)+VjA0(y))]x0=y0-

(3.55)
Comparing this to Eq. (3. 54) requires
[Ai(x)7 (A (y) +V Ao(y )] ) ié{jé(XZY), (3‘ 56)
so that
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7,0) =A,0) + V,4,0) (3.57)

is the canonical partner to 4;. The Lorentz condition
and Egs. (3.2) and (3.47) can be used to recast Eq.
(3. 56) in the form

[4;60), (FPAg= A, oy = — 7,0(x-Y), (3. 582)
or
[4,0), Ay@)]eyy, = = IM7, 3(x ). (3. 58b)
Putting Eq. (3. 58b) into Eq. (3. 56) gives
[440), A,0)]emg =3(00 = MV, 7, )5(x = 9),
(3. 59a)

and the Lorentz condition together with Eq. (3.58b) gives

(4, (), Ao(y)]x():yo == iMV25(x ~ ¥). (3. 59b)
Equation (3. 53) can be used to show
[9(x), 7i0)]x ey, =0 (3. 60)

Note that our locality assumption was made only for the
independent fields. It is therefore gratifying that this
expression occurs for the independent canonical partners
without 2dditional assumptions. Combining Eq. (3. 60),
the field equations and the Lorentz condition implies
that

W), Ag)]eges, =aM20(x)0(x = )
and
[9), A0 gy, =AM ()9, 5(x = 7),

both of which vanish in the free field limit (g=0). Two
useful commutators which follow from these results
include

[A0(), TN oy == MO W), 8(x - y)Jily),
(3.63)

(3.61)

(3.62)

and
=0,

%0™%

[A,(x), I, (W] (3.64)

This completes the list of equal time commutators and
it is a simple exercise to verify that
(o), H], ., =ik(x),
[A.(x), Pl, ., =—iVA,(x),
and

[W(x), Pl ., =—iVx).

%0=%

(3.65)

157 Y%
(3.66)

4. COHERENT STATES AND GAUGE
TRANSFORMATIONS

The conserved current approach is also useful for
discussing gauge transformations of the second kind,
and for relating them to the coherent states. Consider
the bilinear form J (¢, ¥) where ¢ is a c-number function
(to be specified) and ¢ is an operator valued solution
to Eq. (2.1). Specifically, when ¢ ¢L?(R")we have the
case discussed by Klauder, ¢ and when ¢¢ L? something
new and useful occurs. Until we state differently, ¢ will
be taken to be L?*(R"). We begin by defining an operator

Z,(x)=0" (@M 4 - Na0(e), (4.1)
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where

o(@) = [ dxd (e, ¥,

where for fermions
e, Tipt= {ﬁp, N t="1ng, net={np, ¥t=1{0, ¢¥=0,
(4.3)
and for bosons, 7z =1. The necessity for two independent
objects 7 and 7 is well known and full construction of
these quantities can be found in Rzewuski.!” Since (77 1)

is real and commutes with 1, 7, and ¥, it is a real
c-number. We choose conventions such that

(4.2)

(ﬁp TIF)":(“T]F ﬁp)"zé,,;, (4.4)

for all integers n, n> 1. The c-number objects Nz, g,
which also appear in heuristic functional approaches to
field theories, are required for both o'(¢)n, and 7,0(¢p)
to satisfy the same commutation relationships regard-
less of whether they represent boson or fermion fields.

Note that =, is a conserved quantity and is time inde-
pendent only if ¢(x) satisfies Eq. (2.1). If a c-number
solution exists only in the free particle limit, only
Tinteut) j5 conserved. It is then convenient to expand ¢
in terms of plane wave states,

o0=7, [ i

¥or an antiparticle c-number state, one replaces u,(p, x)
by v,(p,x). Substitution for ¢ from Eq. (4.5) into Eq.
(4. 2) gives, in the weak limit,

o.in(out )( <p) — [ de(fJ (QD, Z1Din(out ))
d]
=2 [y K@),

where we have used the definitions of ai™**t(p) from Eq.
(2.15).

In some field theoretical models, ¢(x) can be taken as
a c-number solution to Eq. (2.1). In these cases, o(¢) is
conserved and Eq. (4. 6) can be taken as an expansion in
terms of a complete set of energy eigenstates {u,‘(p, )},
each of which is also a solution to Eq. (2.1).
Correspondingly,

_y D g
o)=L f iEy K@),
with
a,(p) = [ dxJ u,(p, %), ¥(x)),

APle(p, x). (4.5)

(4. 6)

(4.7

where a,(p) destroys a particle with quantum numbers

p and A and satisfies the commutation or anticommuta-
tion relations of Eqs. (2.16) and (2.17). In general,
o(¢) is a particle or antiparticle destruction or creation
operator if ¢ is a c-number particle (antiparticle)
function. This follows from the fact that in any given
Lorentz frame it is the momentum operator

p=pit) (4. 8)

which determines the x dependence of {x). Since it is
the x dependence that determines the orthogonality of ¢
with ¢, @ always acts to project onto either particle or
antiparticle portions of .

If T, is not conserved, we assume that J,{(, ) has
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the form of Eq.
conserved,

[9(x),

(2.32). Then whether or not 2, is
it satisfies the commutation relation

T, (%)= n,0(x). (4.9)
This in turn implies a gauge transformation of the second

kind,

e o) y(x)e" o ¥0) = yY(x) + n,y9(x), (4.10)

directly from Eqgs. (4.1)—(4.5). If S is a time indepen-
dent self-adjoint symmetry operator as defined in Egs.
(2.26)—(2.31) and (2. 37)—(2.42), then it is easy to show

that

eI (x,)e B8 =5 . (xg), (4.11)
where

@' (x)=e'®p(x). (4.12)

Two additional properties of this gauge transformation
which follow from the commutation relations and
Baker—Hausdorf—Campbell theorem are

Ty, %) otn, fa -
e =e’ Ag =expl- 37m, [ @I (@, @)],
(4.13)
and the multiplication rule
eEwl(x )eEw (xo)
Ewl"'@z(x
=e exp {3 T ana [ dx [T(0,, @)= do(@s, @)k
(4.14)
Note that if ¢, and ¢, are orthogonal,
fdx’Jo(QDZ’ (01):0 (4.15)
and
Aor¥o) 2o, (60 _ 2, (%) (4.16)

This is just a superposition theorem since if ¢ is
expanded in terms of an orthonormal set of functions

{u A

@ :‘%km, (4.17)
with

[ dxdo(uy, 1) =80 (4.18)
then a consequence of Eq. (4.16) is

o)y T ) .19)

This is of particular importance for functional integra-
tion purposes where one defines

JODe =] @, @, -+ dh, ().

(4. 20)
The dzkl integrations are over d([Re(k,,)] and d[lm(k )]
i.e., the real and imaginary parts of each k

The gauge transformation of the second kind also
generates the coherent state which is defined as
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|1,0) = e%¢| ),
Mael=(@le® (4.21)
where ISZ) is the physical vacuum defined by
P, |Q)y=0. (4.22)
Because of Eq. (4.10) the average value of #(x) taken
over a coherent state is the usual result
a9 | Wx) | My =1, 0(), (4.23)

and if ¥,(x) is a pure particle destruction operator part
of i, then

3.0 @) =1,0(x) | 1,0 (4.24)
Similarly, if ¢(x) is an antiparticle ¢c-number L? function
W) [na @) =m0 (4.25)

where ¢ is the antiparticle destruction operator. The
inner product of two coherent states follows directly
from Eqs. (4.13) and (4. 14), i.e.,

|2

(pza (pl) J((ﬂl, (pz)]}

Log-01 (xg)

<77A<P1 ‘ nA‘pz> =(Q ‘ e

1=

X exp{ - 27,m, [ dx[J,

= exp[— %ﬁAnAf deo(QDZ - 9017 qu - (pl)]

X exp{= 5M,n, [ dx[T (@, @1) = Jol@r, @)1}
= exp{- M0, [ X[ (@5, ©)+ I, @)

- 2Jo((p|’ @2)]}'

The inner product is normalized to unity for ¢, = ¢, as
it must, and never vanishes for ¢,, @,< L*

(4.26)

The transformation properties of the coherent states
are obtained from Eqgs. (4.11) and (4. 13), i
e N, o) =In,9")=n,e*g) (4.27)

and Eq. (4.26) can be used to show that

Map.let®S 0,0,

= exP[' ﬁAnAf dx‘Jo((pp (1 - eims)¢2)1<n!ﬁ§01 | ”M‘Pz>-
(4.28)

For small real « this reduces to

<nA @, ‘ S ' 77A€02> = deJo(fP: ’ S%)(TIA% \ TIA<P2>,

(4.29)
so that there is a one-to-one correspondence between
coherent state matrix elements and the appropriate
c-number matrix elements. This is an important obser-

vation since this means the domain of the g-number ope-
rator S is restricted by the c-number operator s.

If S is nonzero and

[=,, S]=0, (4. 30)

’X]
then
S| @) =e"eS|R).

Then if | Q) is the physical vacuum and S a physical
observable, S ‘ Q)=0, and

Sley=0.

(4.31)

(4. 32)

B. DeFacio and C.L. Hammer 274



This implies that |1¢) is degenerate with the vacuum.

An example of this is the gauge invariance of the
second kind for the photon field. All physical operators
are invariant under the gauge transformation generated
by

ap = (/2] dx(3,x3.4,), (4. 33)
or equivalently
=(i/2) [ dx(x3,2,4,). (4.34)

The coherent state ly) is a coherent state of unphysical
photons degenerate with the vacuum, '®

The coherent state |x) is a coherent state of unphysical
by an argument due to Klauder®® and Klauder, McKenna,
and Currie® who discussed coherent state representations
for the CCR and the density operator. Let all states be
considered discrete for simplicity purposes and let
Al(x,) be the creation operator defined by Eq. (2. 14).
Then from Egs. (4.13) and (4. 19) one finds

N *_
efoto’= 1'1 {erir"a = atvexp(— 3TaM, ' kx‘z)},
(4. 35)
@R iyngii? pipdan =
f‘ ¢><¢[D¢=I} 5 € nanatial gy AlQXQ‘eklnAAk

-5 [ M) (Aln,)™ .. ]Q} <Q‘(ﬁAA))"1 (M2 . .]_
il Var vt V! Vg, |

(4.36)

This argument is completed by observing that the states

AN DA™ | Q) = | n,, %) (4.37)

are complete. In this argument and in subsequent ones
to follow we consider J(¢, @) as a c~-number. This is
not true in general for interacting fields since J, may
contain some other g-number field besides ¢, e.g., the
fourth component of the photon field in a charged, scalar
electrodynamics. However, such terms acting upon

|2) leave a vacuum for ¢, i.e., serve as a “dressing
transformation” for the physical vacuum |). Thus, we
consider J(¢, @) as a c-number with respect to the phy-
sical vacuum | ). The mathematics required is just that
given by Simon®! in his discussion of projecting onto a
unique physical vacuum.

In general, from Egs. (4.13) and (4. 21) a coherent
state can be written as

\ NaP) = eoTnA l Q) eXp[- %ﬁ,m,;f ayJd (e, (P)]

©

=5 @) g, AT, 4.38
- T ‘ EXD[ FUN ] ( )

where by Eq. (4.29)
(M =m40|N|n,0) = [dxl(¢, @), (4.39)

and the number (charge) operator is obtained by setting

s=1. Because ¢ projects out only particle (or antiparticle)
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states, Eq. (4.39) always gives the average number of
particles (or antiparticles) in the coherent state.

For bosons, 7= 1. When Z (x,) is conserved (time
independent) Eqs. (4.6) and (4. 7) can be used to reduce
Eq. (4.38) to

" dk,
f(p)-—e'“/zx‘”z\[—[ HZ o(E,) M(k,)fki,/\i, ve R Ay)
Tl g
(4. 40)

where

Ny= [ axd (9, @)= Zf |K,(x)|2, (4. 41)
and

(klx )‘1’ seey kny Xn>:‘/___';1—1 a;l (kl) et a;"(k")‘(».

(4.42)

This is the usual result and was clearly known by
Klauder, e al.°"?°

The connection to the coherent states described by
Glauber® is made by observing that Eq. (4.6) or (4.7)
can be rewritten as

dk
¥ t
z*a ;/p(Ek) Ki(k)a, (k)
= [dxd (o, y),

where z* is a c-number and ¢ is a g-number destruction
operator. If z is normalized according to

=fdeo(qo, 9) =

then the commutation relations for a,(k) which follow from
Eqs. (2.16) and (2. 17) and which apply for any conserved
current determine that

(4.43)

K\ (k)| (N},

(4. 44)

2]~ Z p(E)

la, a']l=1 (4. 45)
and
[V, a']=a,
where
dk
N=faxite 0)=T [LI5 qma®. @

Thus, an n-particle state can be constructed according
to

/eI )aty | Q) = |n)
with

Niny=n|n). (4. 48)

In terms of n-particle states the coherent state |¢) is
given by
(4. 49)

]q))—exp-2|z' Z ln)

n!

This is the Glauber form for a coherent state for which
the completeness relationship is

s
/—f-|¢><<ﬂ|=l,
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where
d?z =dxdy
and

Z:x+iy. (4. 50)

However, in the Glauber formalism the states |x) are
states of n particles, each of which have the same quan-
tum numbers, Here the |#) particle states are states of
n-particles each of which have the same average quantum
numbers. To see this, consider the matrix element of a
g-number symmetry operator S

(m] [ axd (g, sw)|n)=
(1/VnT Vm ) x fax{@|dqlam, ¥}, slg, a™)] @), (4.51)

where J,, is assumed to be normal ordered. The defini-
tions of @ and a' can be used to show that

la, af(k)]=(z*)"K¥ &),
and
[4, a']=(2)¢(x). (4. 52)

These commutation rules applied to Eq. (4.51) give that

(m|S|my= —"2__ [axJ (@, s¢) m=-1]n- 1)
mn iz
~m5mfde0(<p, s@)
 [axdfe, @)
= m(s)5,, . (4.53)

For fermions, 7% =0 and Eq. (4.38) reduces to the
result

|170) = exp[- (1/2)] 2 | 271'771:]{’ Q) +npz| 1}

Thus, these coherent states cannot contain two or more
fermions with the same average quantum numbers.
However, there may be more than one fermion in a

state if some of the quantum numbers have different
averages. Such a state can be constructed by taking a
direct product of the different copies of Eq. (4.54). This
type of coherent state can be constructed from the forma-
lism leading to Eq. (4. 54) by the replacement

Tir¥ *’Z"?thzul,
7

(4. 54)

(4. 55)
za—2. z,a,,
1

where now (g, 1p,)"=0,, for all integers »n> 1, but now
Npy Mrm# 0 when I#m,

All this is for the case where ¢ is an L? c-number
function, However, a useful property can be obtained
when ¢ is not L%, As Klauder has shown, the measure
dm of a field theory can be written as

dm( })=dmp( )& dm,() (4. 56)

where dmp{ ) is the free measure and dm,.( ) is the pure
absolutely continuous measure. Nontrivial interactions
“live on” dm,.( ). For the translation given in Eq. (4.10),

e Foy(x)e Po = YWx)+n, @(x), (4.10")
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with ¢ €L, we remain in the free (noninteracting!)
measure dmg( ). To escape L?, we must translate accor-
ding to a ¢-number function, specifically designated as

¢( ), which becomes non-L? as a function of a singularity
parameter y. Then, it must be emphasized, X, generates
a transformation e¥c which is improper rather than uni-
tary. In the present approach, the same current J, or

J%, generates both the unitary (e®¢) and improper (%)
gauge transformation of the second kind. The improper
transformation will be discussed in the next two sections.

5. HILBERT SPACE, OPERATOR EXTENSIONS
AND BANACH SPACE

So far, a good deal of heuristic formalism has been
presented without mathematical rigor. In this section,
we study the Hilbert space properties operators and
solutions, including essential self-adjointness and
domains. This will be based on the work of Reeh® who
gave a rigorous discussion of symmetries and symmetry
breaking in the presence of a conserved current such
as our Eq. (2.9), and of Klauder® who gave a rigorous
discussion of exponential Hilbert spaces and bilinear
operators. However, in contrast to Reeh® and Klauder®
we have a differential equation which determines the con-
served current J,( , ) and thereby the Lebesque measure
du of L%, du).

The differential equations may also have solutions
which are not L2, such as for example virtual or reso-
nance eigenfunctions which have complex eigenvalues.
Equivalently, the differential operator and the operators
constructed from the current J( , ), as in Eq. (2.37),
may be non-self-adjoint. These operators “live on” a
Banach space /3 and not a Hilbert space //. Some proper-
ties of these operators will also be discussed in this
section.

One of the first tasks of constructing a rigorous quant-
ized field theory is to take the “classical field ansatz”
for a Hamiltonian and symmetry operators, such as Egs.
(2.37) and (2. 44), and find self-adjoint extensions with
a common dense domain. The pioneering work on essen-
tial self-adjointness?® for the operators appearing in
quantum mechanics was by Kato.? Two recent studies by
Faris and Lavine®® and Schroeck® are especially relevent
to our work. Faris and Lavine® have extended the essen-
tial self-adjointness proofs to operators which are not
semibounded, which is necessary for charge operators
with positve and negative eignevalues. Schroeck®® has
extended the essential self-adjointness proofs to the
purely absolutely continuous measure. This is necessary
for interacting systems” and for irreducible representa-
tions of the Weyl algebra of the fields.?" A number of
other references can be traced through the bibliographes
of these studies. 2*-2® We refer the interested reader to
their references for further discussion of these issues.

In our approach the emphasis is placed on the study of
the c-number differential equation, Eq. (2.1), which
simplifies matters considerably. Thus, whenever an
operator s or k is self-adjoint on a dense domain, Eq.
(4. 29) implies that S or H is self-adjoint on C;. Further-
more, Eq. (4.53) with the existence of a unique vacuum
implies that the Fock representation exists and that the
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eigenvalues of S and H are average quantum numbers.
Thus, if the partial differential operator D(?) is well
enough behaved, wave packets with continuous spectra
can be treated as well as point and absolutely continuous
spectra.

Although noniocality will not be investigated in this
work, our analysis seems to include this possibility
since S and H can be smeared over the spectrum of s
and & without affecting our results.

It follows from Eq. (4. 29) that the existence of a classi-
cal c-number set of solutions is absolutely required for
the existence of a quantized theory. One can ask what
this implies about quantum electrodynamics, which is
certainly one of the most successful second quantized
theories at making accurate experimental predictions.
Happily, thanks to the nice work by Gross®® the answer
is that a classical solution exists. And from a study of
Gross’s work one expects that given enough strength and
patience, his study could be generalized to the case
M#0 as in our example in Sec. 3. However, that is a
worthy project for (possible) future study and we simply
conjecture that Sec. 3 has an underlying classical theory
and leave matters there, for the present.

Next, let us turn to the non-L? solutions. Let/f/,
denote the c-number space of L? solutions {«,}, and let
B denote the Banach space of all solutions {un, ¢} to Eqgs.
(2.1), not all of which are L2, Thus 4/,c/ properly.
Define C, as the dual to A in terms of the conserved
current, Eq. (2.12), so that CDCHH properly. For this
case, there exists a one-one, continuous inclusion
mapping

CocHu B,

both algebraically and topologically. This structure is
called a rigged Hilbert space.?® Thus, there will exist
solutions c €55, ¢#//,, and at least one L? solhution,
say u,, for which

fdeO(uO, c)—= o,

(5.1)

(5.2)

For example, this describes the case when the coupling
constant reaches a value such that the pole corresponding
to one of the u,’s is driven into the unphysical sheet.
Equivalently, the solution is driven out of 4/, into 3.

A general c-number function ¢ =/ can be written as
(5.3)

where the §’s are constant, u,c//,, cc 8 and ¢ & H
and a transformation

~ o
@ :%lﬁnun_'_ C,

U

:eE@,(xo)’

(5.4)

can be defined in parallel to Eq. (4.13). This transforma-
tion is now improper since by Eqs. (4.7), (2.18), (2.17),
and (5. 2),

[0(9), a"@)]= [ dxd (@, @)=, (5.5)
and is at best an isometry since by Eqs. (4.39), (4. 40)
@@ =0, (5.6)

thereby making | ) unitarily inequivalent to the Fock
space {|m)}. In fact, it is easy to show that

(@ley=0,

)

(5.7)
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whenever
|fdeo(C, C)|/|dXJo(C, (/7)\ — x, (5.8)

so that all of the |¢)’s are disjoint from #//, the Fock
representation Hilbert space.

it is also ctear that |¢) is not in 2 Fock representation,
from the fact that®
(@|N|@Y/@| @) = [ axdy(@, @)= (5.9)

by Eqs. (4.39) and (5.2). However, other operators

S as in Eq. (4.29), or even a current algebra among the
S;’s may be defined on the | ¢)’s whenever J,(¢, s@) or
Jo@, [s;, s;]@) exists. For example, given

& _ybr+1)

D(3,) - jlx)=~ 7= 5 = 26, + w'?, (5. 10)
and a solution

P(x)=B(1+1/|x| ") e-ex’/? (5.11)
with

I(@, @)=0*(x)o(x), (5.12)

where B, w, v are positive, real parameters, Eq. (5.9)
clearly implies that the number operator is ill-defined
fory = 4. Equally clearly, for large enough real numbers
»

b

[dxJ (@, x"@)< . (5. 13)

Thus, operators and algebras of operators can be per-
fectly well defined in such a non-Fock representation.
Such constructs are prominent in Klauder’s ultralocal
model field theories which we discuss in the next
section.

6. ULTRALOCAL MODEL QUANTUM FIELD
THEORIES

The uliralocal quantum field theories which Klauder®?°
has recently formulated and solved can be contructed in
terms of bilinear forms derivable from differential equa-
tions in an internal, space-time independent, variable
A. Ultralocal models are non-covariant mode field theo-
ries in which the spatial gradients have all been dropped
from a covariant model. Since Klauder’s resultss1°
directly apply to our case, we shall omit the many proofs
which make his work (and ours) mathematically sound.

To establish the ultralocal analog of Eq.(2.1), let
A(x, ) be the field operator which satisfies the field
equation

D(3,, 3, v(\A(x, A)=0,

where v() is the c-number scalar “interaction potential”
to be determined, x=(x, ix,), and X is a space time inde-
pendent variable. We assume that a total set of stationary,
L, c-number states exists which satisfy

(6.1)

D(3,, —ic,, v(\)u,(r) =0, (6.2)
(X, %) =u,(\)exp(- i€ x,), (6.3)
and
J o, 1), 1,0, £)=5,,, (6.4)
and J, is the timelike component of the conserved
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current in the variables (A, x,). If {f,(x)}'s are a
total set of c-number solutions for the x-dependence,
then a general c-number solution is of the form

o(x, x)=§ B.f. (X, (A, x,), (6.5)

where the 8,’s are constants and » is (possibly continuum
cardinality) the index set of allowed quantum numbers.

As shown in Sec. 2, time independent g-number anni-
hilation operators can be defined as

a,(x)= [ d\J (@, %), Alx, 1)), (6.6)
and
o(p)= [ dx [ dJy(p(x, 1), A(x, \)
=7 [ dxf (x)a,(x). (6.7)

Following the basic quantization postulate of Eq. (2. 16),
we require that

[o(@)), ol@,)]=0 (6.8)
and
[o(@)), o@)]= [ dx[ d dy(,(x, 1), @,x, A).
(6.9)

The unequal time commutators which follow from Eq.
(6.9), using the technique described in HT, are

[A(x, A, olg)]=0,
[A(x, ), d'(@)]=0(x, 1),

(6. 10)
(6.11)
and

[A(x, 1), Aly, M]= 2 F®u,0, xh,0, ve) f(¥).
' (6.12)

A Hamiltonian operator H and a momentum operator
P can be defined as

H:fdxfd?\J(,(A(x, V), (i%)(x, x)),
d

P= [dx[d\d(Alx, 1), (=iv,A)(x, V).

Since H is to be essentially self-adjoint, substitutions
from Eq. (6.1) into Eq. (6.13a) can be made such that

H:fdx/deo ((zgi: (x, A), A(x, k))

on a dense domain. In fact if any operator S is closed and
semibounded then by Theorem VIII. 15 of Reed and
Simon®® it has a unique self-adjoint quadratic form. Since
S must be semibounded for a stable vacuum, we need only
to show closure on the coherent states to show that Egs.
(6.13) and (6. 14) are uniquely self-adjoint.

(6.13a)
an

(6.13b)

(6.14)

As a result of Eq. (6.11), a gauge transformation of
the second kind may be defined for these fields as

e TeA(x, NeTo =A(x, \)+ @{x, A), (6.15)
where
Z,=0"(@) -0 (e), (6. 16)

with @(x, A) given by Eq. (6.5). As discussed in Sec.
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4, the coherent states |¢), @( )eL?(, du), can be written
as

| ) =e"e| Q).

Now following Klauder, ® we introduce an improper trans-
formation e% as in Eq. (5.4) with

@lx, A) =lx, )+c(), (6.18)

where ¢ satisfies the condition of Eq. (5.2) with c=f3
but ¢ €4/ .. The operators

B(x, N)=e %A (x, 2)eFo
=A(x, M)+ @(x, V),

(6.17)

(6.19)

can be defined which also satisfy Eqs. (6.1) and (6. 12).
Although B(x, 1) satisfies the same differential equation
and commutation rules as A(x, %), it cannot be used to
generate a Fock representation because it is unitarily
inequivalent to A{x, ). Equivalently, a number
operator

Ng= e'wadxtho(A(x, A), A(x, 1))eFo,

does not exist.

(6.20)

To reproduce Klauder’s formulation of ultralocal
models, °'° choose J, with the canonical form of Eq.
(2. 32), specifically he chooses

Jo(ﬂA(xy )\)7 q()\, ax)A(xy K)):At(xy )\)q()‘5 aA)A(X, A‘)?
(6.21)
and assume c(\) satisfies the time independent equation,
Eq. (6.2), withe, =0
D(3,, 0, v(A))c(M)=0. (6.22)
In technical terms, ® ¢ must be real, even and nowhere
vanishing with

[ e2(\)dn =,

~o0

(6.23)

and

[ 222()dn/(1+22) <o, (6.24)
Thus, ¢(A\)~ {A|™ with y real and } <y <3 near the origin
in X. A useful subclass of Eqs. (6.23) and (6. 24) is
Klauder’s family of model functions,®i.e.,

c(M)=e>™/ | A], (6. 25)

where v{\) is an even polynominal with degree (v} > 2.

Clearly, Eq. (6.22) determines the interaction poten-
tial #(A) once ¢(A) is given. This is an interesting aspect
of Klauder’s work on ultralocal models. Any model func-
tion ¢(1) can be choosen providing it satisfies Egs. (6.23),
and (6. 24). This choice determines the energy spectrum
{e,.} and L? eigenfunctions {u,}. This together with Eq.

(4. 29) assures the closure needed to establish that § is
unique and self-adjoint as a quadratic form. Note that
the action of driving a state out of L? is accomplished by
continuous variation of y so that Z«, ->Z;, becomes singu-
lar as y >3.

Of particular interest is the transformation generated
2.. (¢ =c) because the time independence of c(2) and Eqgs.
(6.13) and (6. 14) insure the invariance of the Hamiltonian
and momentum under
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H:e'EcHe’:C:fdxfd)\Jo (B(x, A), (i%?)(x, x))
- f dx f deo(A(x, A, (ig—‘t‘)(x, x)), (6. 262)
d

P=¢TcPelc = [ dx [ dJ(B(x, \), (~iVB)(x, X))
= [dx [ d\ JA(x, V), (=iVA)(x, V). (6. 26b)

Because the operators A and B satisfy the same dif-
ferential equation, J, has the same form for both sets
of operators. Thus one can formally define operators
as in Sec. 2,

an

Qp(x)= [drJI(B(x, 1), ¢B(x, \)),

Qn(xo) = [ dxQp(x), (6.27)
and, since J, has the canonical form,
[Qal(x), Qag(y)]x():yo

=8(x=y) [ A J(B(x, N, [q1, q]Blx, V). (6.28)

For the form of J, used by Klauder, Eq. (6.21), two such
formal operators are the ultralocal field

@(x)= [ drJy(B(x, 1), AB(x, \)), (6. 29)
and its “canonical partner”
m(x)= d?\J0<B(x, A), (— iaaTB>(x, )t)). (6. 30)

Because of Eqs. (6.23) and (6.24), and the fact that

8

AcE(\)dr =0, (6.31)

8

&(x) is well behaved but 7(x) is not defined. Furthermore,
[®(x), ()], ., =i6(x-y)Ng, (6.32)

is not defined because of Ny which contains the infinite
field strength renormalization, f c*(\)dr ==, Interesting-
ly, Hegerfeldt and Klauder® have shown that no partner
to ¢ can exist on a dense domain and therefore no cano-
nical partner to ® exists. Since their study was based
upon the expectation functional, they excluded all possi-
ble canonical partners not just those suggested by dy-
namical considerations, such as Eq. (6.30).

X0=Yo

It is straightforward to show Klauder’s result®® for
a renormalized bilinear Fg,

Fp=Z2"f(Z%(x))
= [ dxJ(B(x, 1), f(N)B(x, 1)), (6. 33)

where formally Z ' =5(0) holds for all J, of the canonical
form of Eq. (2.32) if f(A) is expandable in powers of A.
This result is useful for discussing the ultralocal inter-
action potential because the form of Eq. (6.1) used by
Klauder is

D(a)u aoa ‘l}(}\)):h(al, x)_ia_5

57 (6.34)
= 2 o)
== — 4+ . 6. 35
— (6. 35)
The Hamiltonian of Eq. (6.26) then becomes
H= [ax[ a\B'(x, MhB(x, \). (6. 36)
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1t is therefore reasonable to define the renormalized
ultralocal interaction potential Vp

Ve=2"v(Z&(x))= [ dB'(x, N)o(\)B(x, \).  (6.37)

This illustrates the fact that the choice of ¢() determines
both the dynamics [through v(A)] and the representation

of the field & (through exp?. ), linking the dynamics and
the field representation Equations (6.28) and (6.33) are
also useful for obtaining the ultralocal form of equations
of motion. A direct calculation using Eq. (6. 34) gives

(&, H]=ib=in(x), (6. 38)
which is undefined although
e, H), Hl=-%
=ZW ' (Z®) (6. 39)

is perfectly well defined as a quadratic form, where
V' is the functional derivative of V, with respect to
(Z®). The absence of spatial gradients in Eq. (6.39) is
the characteristics feature of ultralocal fields.

The-form equation of motion displayed in Eq. (6. 39)
is inadequate for dynamics, because the construction of
a solution requires powers of the field which is more
information than the form contains. Klauder® has solved
this problem by constructing operator solutions. He
found that a generalized field operator

&9 (x)= [ d\Jy(B(x, ), A’B(x, \)) (6. 40)

is needed, with 6 =p + 2y, p a strictly positive integer
{1,2,3,++ +}, and y the singularity parameter. When 6
is a noninteger, )°is defined as the odd extension,

)\9_ IAIB’ >‘>O
1= |x]% a<o°

Although it is far from obvious, &2 has an operalor equa-
tion of motion,

d2=—[H, [H, ¢2]]
= 4H(x) -2 w, [ 27 (x) = (@] & 2 (x)| )].
" (6. 42)

The operator equation of motion specified by Eq. (6.42),
although complicated, is trouble-free and specifies via-
ble dynamics. We will not repeat Klauder’s argument
here, but refer to his paper® for details. Clearly, ultra-
locality is preserved under renormalization and time
evolution. Thus, our formalism reproduces Klauder’s
ultralocal solutions®!° when we require that our conser-
ved current J( , ) has the form of Eq. (6.21). Presum-
ably with the bilinear formalism presented here,
Klauder’s ultralocal models can be extended to include
D(3) other than Eqgs. (6.34) and (6. 35). In general, this
will require a different J,(x) which can then be used to
exploit the symmetries of the theory.

(6. 41)

Klauder’ has shown that the set of all

[r=e®|Q); &)= [dxf(x)a(x), (6.43)

is a non-Fock representation which spans // and is in
the domain of H3/#+(1/2¥-¢ (¢ >>0), This is to be contrast-
ed with the set of all

| @) =e®o | ), (6. 44)
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which is a Fock representation of // and is in the domain
of H, Observe that

(c|lpy=0 (6. 45)
as well as
{c|fy=0, (6. 46)

so that |¢) is disjoint from both the Fock and non-Fock
representation of //. Thus the disjoint state |c), which
has the same quantum numbers as the vacuum, condens-
es out of £/, This is suggestive of some sort of “collec-
tive exitation.” “Higher exitations” can be formed from
other singular functions ¢, which are solutions to

he,=¢€c,. (6.47)

7. CONCLUSIONS

We have extended the formalism of Hammer and
Tucker? to interacting cases. Within this formalism,
coherent states are discussed including symmetry opera-
tors on coherent state domains. The concept of a
“smeared” Fock representation with spectrum given by
average eigenvalues is developed. Singular or improper
gauge transformations of the second kind, which follow
from non-L? solutions to the field equations, are shown
to generate representations unitarity inequivalent to
the smeared Fock space. Such representations are nece-
ssary to support interactions.

Two completely different examples were discussed,

(i) a Dirac field minimally coupled to a massive vector
field, and, (ii) J. R. Klauder’s ultralocal models, as
examples of our formalism. Neither of these examples
have a canonical Lagrangian formulation. However,
in each case the field equations determine very different
conserved currents which give the structure of the
theory.

In discussing essential self-adjointness and domains,
g-number operators S, H are discussed in terms of
underlying “internal symmetry” operators s, k. This
suggests an “induced self-adjointness,” and may
possibly be related to methods developed by Dashen,
Hasslacher and Neveu. *?

Some key concepts used inthis work are taken from
Klauder’s studies® of representations of CCR on an expo-
nential Hilbert space. In that paper, bilinear “fields”
occur naturally on a coherent state domain and infinife
divisibility is shown to provide several interesting exam-
ples. We show that these ideas can be used to generalize
(and add rigor to) Hammer and Tucker? as well. We
therefore suggest that (noncurrent algebra) bilinear
formalisms and ultralocal model quantum field theories
still have a good deal to teach us about “quantized
fields.” We hope to explore this conjecture in future
works,

The formalism developed here may provide analterna-
te way to study many-body systems since analogs to
both the L* gauge transformation e®¢, and the non-L?
gauge transformation e®v play a key role in the Boson
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method which Umezawa and collaborators®3° are pre-
sently developing with functional integration techniques.
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The Weyl tensor and stationary electrovac space~times
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It is shown that static electrovac spaces admit only static electric type Maxwell fields, and it is proved that
a necessary and sufficient condition for a stationary electrovac space-time to be static is that the Weyl

tensor and the Maxwell field tensor both be pure electric type.

In recent work!+? the connection between the magnetic
part of the Weyl tensor and the rotational properties of
stationary vacuum space-times and perfect fluid space—
times has been discussed. Both classes of space—times
have a preferred timelike vector field with respect to
which the magnetic and electric parts of the Weyl tensor
are defined. It has been proved that a necessary and suf-
ficient condition for a stationary vacuum space-time to
be static! is that the Weyl tensor be pure electric type;
also a shear-free perfect fluid space—time is irrota-
tional® if and only if the Weyl tensor is pure electric
type.

This note extends the theorem on stationary vacuum
spaces to include source-free electromagnetic fields.
All equations here numbered with the prefix 4 refer to
kinematic equations for the Weyl tensor which are col-
lected in an appendix of Ref. 2.

Theorvem: A necessary and sufficient condition for a
stationary electrovac space—time to be static is that the
Weyl tensor and the Maxwell field tensor both be pure
electric type.

Proof: Consider a stationary electrovac space—time
with the Einstein—Maxwell field equations®

Ruu: K[Fuoz‘Fva - <lfgu1/-1;‘0“31:(:43]5 (1)
*
v, Py, 0, (@)

The space—time has a timelike Killing vector £* with
norm ¢?:=£%¢ . The unit vector along £* is defined by

ua: — ¢-1£a i
The Weyl tensor and Ricci tensor comprise the
algebraically independent parts of the curvature tensor,
RuvaB: Cuuaﬂ - 25[u[aRV]B] + %Gu[aéuB]R’
and in this work R=0.

The electric and magnetic parts of the Weyl tensor
and Maxwell field tensor are defined with respect to the
unit Killing vector as follows:

E;:=F, u, (3a)
B,:=F (3b)
E g:=Cy g u’, (4a)
B,y= Z‘weuu“u”. (4p)

All electric and magnetic vectors and tensors are
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orthogonal to #*, In addition, the electric and magnetic
parts of the Weyl tensor are symmetric and trace-free.

The Riccel tensor expressed in terms of electric and
magnetic fields is given by

R,,=«[-3(E®+ BYu,u,+ 2u N, as E*B*+ E E,+ B, B,
+37,(E*+ B%)], (5)
where E*:=—E°E_, B®:=~B%B_,¥,,:=8,, ~#,U

uu
and ¥ acts as a projection operator onto the quotient
3-spaces to u”. The operation of projection onto these
3-spaces will be denoted by L which projects all free

indices. Maxwell’s equations become

v,B*+a,B*+20w"E, =0, (6a)
V.E*+ta,E* -20*B, =0, {(6b}
LE# — ey Ey+ Vo By —a,By)=0, (7a)
.Lﬁ“—n““ﬁ(waBB—V&EB+auEB):O, (7b)

where
ayi= uVg,= ¢ Vit = - 97V, 0,
wu::%nuuasuvuaw: (¢-2)%nuvaegv£a;6,
and a dot denotes the covariant derivative in the «“
direction.

The necessary part of the theorem follows when the
twist of the Killing vector is equated to zero, i.e., w®
=0, Equation (A4) shows that B, =0 independent of
field equations when the space—time admits a twist-free
timelike Killing vector. In fact, the reflection symmetry
of static spaces implies that B, and B, must both be
zero directly from their definitions. * Maxwell’s equa-
tion (7a) then requires that the electric field be constant.
Thus the electromagnetic field in a static electrovac
space must always be static electric type.

To prove sufficiency, consider the divergence
equation (A8):

V4B, = (k/2)(E, ;4B — E, B, + ag(E, B - B E")
- wo(E?+ B?) - 2u,w*n, , E°B°]

-aBBaB—BwBEuB: (8)

where Eq. (5) and the shear-free property of the Killing
vector have been used. With B,,=B,=0, Eq. (8) yields
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WA[E g+ (k/6)E%Y,,] =0. 9)
When the Weyl tensor is either pure electric or pure
magnetic type it must be® Petrov type I, D, or O. w,

=0 follows immediately for type O. For types I and D

det[E 4 + (k/6)E?Y,,4]#0, (10)
since a vanishing determinant implies E ; would have

three equal eigenvalues, which is not possible. Thus
w*=0, =
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monopoles. Such “pseudoscalar” sources are incompatible
with the idea that static systems should have no preferred
time orientation.

5p, Jordan, J. Ehlers, and W. Kundt, Akad. Wiss. Lit.
Mainz Abh, Math, Naturwiss. Kl., No. 2 (1960),
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ERRATA

Erratum: Gauge transformations and normal states of the
CCR [J. Math. Phys. 16, 2086 (1975)]

M. Fannes and A. Verbeure

Katholieke Universiteit Leuven, Belgium
(Received 3 October 1975)

As pointed out by F. Rocca, Theorem II. 4 fails as it
stands. The correct statement should be:

Theovem 1I.4: Let w, be a normal state on A(H, o)
such that there exists a dense set /) €/ ,(H,dJ) with the
property [1/w(W,)10 %) < 7L ,(H,d}), where f Xg stands
for the o-convolution and 7 for the o-Fourier trans-
form. Then the linear hull of the set {w,- 7, |x € K} is
norm dense in the set of normal states on A(H, o).

In spite of the less strong character of the conditions,
the proof can be performed along the same lines as that
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of F. Rocca in Ref. 3. It is easy to check that all states
w such that w(W,)# 0 and infinitely differentiable satisfy

the condition.

In Lemma II.2, A should be a Hilbert—Schmidt

operator and the state w should satisfy w(W,)# 0 for all

e H,

By those changes Lemma II.3 proves that span

{r,plx c K} is dense in the set of Hilbert—Schmidt

operators.
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